热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

高效的Python代码

高效的Python代码
  在我看来,python社区分为了三个流派,分别是python 2.x组织,3.x组织和PyPy组织。这个分类基本上可以归根于类库的兼容性和速度。这篇文章将聚焦于一些通用代码的优化技巧以及编译成C后性能的显著提升,当然我也会给出三大主要python流派运行时间。我的目的不是为了证明一个比另一个强,只是为了让你知道如何在不同的环境下使用这些具体例子作比较。

  使用生成器

  一个普遍被忽略的内存优化是生成器的使用。生成器让我们创建一个函数一次只返回一条记录,而不是一次返回所有的记录,如果你正在使用python2.x,这就是你为啥使用xrange替代range或者使用ifilter替代filter的原因。一个很好地例子就是创建一个很大的列表并将它们拼合在一起。

import timeit
import random

def generate(num):
while num:
yield random.randrange(10)
num -= 1

def create_list(num):
numbers = []
while num:
numbers.append(random.randrange(10))
num -= 1
return numbers
print(timeit.timeit("sum(generate(999))", setup="from __main__ import generate", number=1000))
>>> 0.88098192215 #Python 2.7
>>> 1.416813850402832 #Python 3.2
print(timeit.timeit("sum(create_list(999))", setup="from __main__ import create_list", number=1000))
>>> 0.924163103104 #Python 2.7
>>> 1.5026731491088867 #Python 3.2

  这不仅是快了一点,也避免了你在内存中存储全部的列表!

  Ctypes的介绍

  对于关键性的性能代码python本身也提供给我们一个API来调用C方法,主要通过 ctypes来实现,你可以不写任何C代码来利用ctypes。默认情况下python提供了预编译的标准c库,我们再回到生成器的例子,看看使用ctypes实现花费多少时间。

import timeit
from ctypes import cdll

def generate_c(num):
#Load standard C library
libc = cdll.LoadLibrary("libc.so.6") #Linux
#libc = cdll.msvcrt #Windows
while num:
yield libc.rand() % 10
num -= 1

print(timeit.timeit("sum(generate_c(999))", setup="from __main__ import generate_c", number=1000))
>>> 0.434374809265 #Python 2.7
>>> 0.7084300518035889 #Python 3.2

  仅仅换成了c的随机函数,运行时间减了大半!现在如果我告诉你我们还能做得更好,你信吗?

  Cython的介绍

  Cython 是python的一个超集,允许我们调用C函数以及声明变量来提高性能。尝试使用之前我们需要先安装Cython.

sudo pip install cython

  Cython 本质上是另一个不再开发的类似类库Pyrex的分支,它将我们的类Python代码编译成C库,我们可以在一个python文件中调用。对于你的python文件使用.pyx后缀替代.py后缀,让我们看一下使用Cython如何来运行我们的生成器代码。

#cython_generator.pyx
import random

def generate(num):
while num:
yield random.randrange(10)
num -= 1

  我们需要创建个setup.py以便我们能获取到Cython来编译我们的函数。

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

setup(
cmdclass = {'build_ext': build_ext},
ext_modules = [Extension("generator", ["cython_generator.pyx"])]
)

  编译使用:

python setup.py build_ext --inplace

  你应该可以看到两个文件cython_generator.c 文件 和 generator.so文件,我们使用下面方法测试我们的程序:

import timeit
print(timeit.timeit("sum(generator.generate(999))", setup="import generator", number=1000))
>>> 0.835658073425

  还不赖,让我们看看是否还有可以改进的地方。我们可以先声明“num”为整形,接着我们可以导入标准的C库来负责我们的随机函数。

#cython_generator.pyx
cdef extern from "stdlib.h":
int c_libc_rand "rand"()

def generate(int num):
while num:
yield c_libc_rand() % 10
num -= 1

  如果我们再次编译运行我们会看到这一串惊人的数字。

>>> 0.033586025238

  仅仅的几个改变带来了不赖的结果。然而,有时这个改变很乏味,因此让我们来看看如何使用规则的python来实现吧。

  PyPy的介绍PyPy 是一个Python2.7.3的即时编译器,通俗地说这意味着让你的代码运行的更快。Quora在生产环境中使用了PyPy。PyPy在它们的下载页面有一些安装说明,但是如果你使用的Ubuntu系统,你可以通过apt-get来安装。它的运行方式是立即可用的,因此没有疯狂的bash或者运行脚本,只需下载然后运行即可。让我们看看我们原始的生成器代码在PyPy下的性能如何。

import timeit
import random

def generate(num):
while num:
yield random.randrange(10)
num -= 1

def create_list(num):
numbers = []
while num:
numbers.append(random.randrange(10))
num -= 1
return numbers
print(timeit.timeit("sum(generate(999))", setup="from __main__ import generate", number=1000))
>>> 0.115154981613 #PyPy 1.9
>>> 0.118431091309 #PyPy 2.0b1
print(timeit.timeit("sum(create_list(999))", setup="from __main__ import create_list", number=1000))
>>> 0.140175104141 #PyPy 1.9
>>> 0.140514850616 #PyPy 2.0b1

  哇!没有修改一行代码运行速度是纯python实现的8倍。

  进一步测试为什么还要进一步研究?PyPy是冠军!并不全对。虽然大多数程序可以运行在PyPy上,但是还是有一些库没有被完全支持。而且,为你的项目写C的扩展相比换一个编译器更加容易。让我们更加深入一些,看看ctypes如何让我们使用C来写库。我们来测试一下归并排序和计算斐波那契数列的速度。下面是我们要用到的C代码(functions.c):

/* functions.c */
#include 
#include 
#include 

/* http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort#C */
inline void
merge (int *left, int l_len, int *right, int r_len, int *out)
{
int i, j, k;
for (i = j = k = 0; i 

  在Linux平台,我们可以用下面的方法把它编译成一个共享库:

gcc -Wall -fPIC -c functions.c
gcc -shared -o libfunctions.so functions.o

  使用ctypes, 通过加载”libfunctions.so”这个共享库,就像我们前边对标准C库所作的那样,就可以使用这个库了。这里我们将要比较Python实现和C实现。现在我们开始计算斐波那契数列:

# functions.py

from ctypes import *
import time

libfunctiOns= cdll.LoadLibrary("./libfunctions.so")

def fibRec(n):
if n <2:
return n
else:
return fibRec(n-1) + fibRec(n-2)

start = time.time()
fibRec(32)
finish = time.time()
print("Python: " + str(finish - start))

# C Fibonacci
start = time.time()
x = libfunctions.fibRec(32)
finish = time.time()
print("C: " + str(finish - start))

  正如我们预料的那样,C比Python和PyPy更快。我们也可以用同样的方式比较归并排序。

  我们还没有深挖Cypes库,所以这些例子并没有反映python强大的一面,Cypes库只有少量的标准类型限制,比如int型,char数组,float型,字节(bytes)等等。默认情况下,没有整形数组,然而通过与c_int相乘(ctype为int类型)我们可以间接获得这样的数组。这也是代码第7行所要呈现的。我们创建了一个c_int数组,有关我们数字的数组并分解打包到c_int数组中

  主要的是c语言不能这样做,而且你也不想。我们用指针来修改函数体。为了通过我们的c_numbers的数列,我们必须通过引用传递merge_sort功能。运行merge_sort后,我们利用c_numbers数组进行排序,我已经把下面的代码加到我的functions.py文件中了。

#Python Merge Sort
from random import shuffle, sample

#Generate 9999 random numbers between 0 and 100000
numbers = sample(range(100000), 9999)
shuffle(numbers)
c_numbers = (c_int * len(numbers))(*numbers)

from heapq import merge
def merge_sort(m):
if len(m) <= 1:
return m
middle = len(m) // 2
left = m[:middle]
right = m[middle:]
left = merge_sort(left)
right = merge_sort(right)
return list(merge(left, right))

start = time.time()
numbers = merge_sort(numbers)
finish = time.time()
print("Python: " + str(finish - start))

#C Merge Sort
start = time.time()
libfunctions.merge_sort(byref(c_numbers), len(numbers))
finish = time.time()
print("C: " + str(finish - start))
Python: 0.190635919571 #Python 2.7
Python: 0.11785483360290527 #Python 3.2
Python: 0.266992092133 #PyPy 1.9
Python: 0.265724897385 #PyPy 2.0b1
C: 0.00201296806335 #Python 2.7 + ctypes
C: 0.0019741058349609375 #Python 3.2 + ctypes
C: 0.0029308795929 #PyPy 1.9 + ctypes
C: 0.00287103652954 #PyPy 2.0b1 + ctypes

  这儿通过表格和图标来比较不同的结果。

Merge Sort Fibonacci
Python 2.7 0.191 1.187
Python 2.7 + ctypes 0.002 0.044
Python 3.2 0.118 1.272
Python 3.2 + ctypes 0.002 0.046
PyPy 1.9 0.267 0.564
PyPy 1.9 + ctypes 0.003 0.048
PyPy 2.0b1 0.266 0.567
PyPy 2.0b1 + ctypes 0.003 0.046

以上就是高效的Python代码的详细内容,更多请关注 第一PHP社区 其它相关文章!


推荐阅读
  • 本文分享了作者在使用LaTeX过程中的几点心得,涵盖了从文档编辑、代码高亮、图形绘制到3D模型展示等多个方面的内容。适合希望深入了解LaTeX高级功能的用户。 ... [详细]
  • 本文概述了在GNU/Linux系统中,动态库在链接和运行阶段的搜索路径及其指定方法,包括通过编译时参数、环境变量及系统配置文件等方式来控制动态库的查找路径。 ... [详细]
  • 使用IntelliJ IDEA高效开发与运行Shell脚本
    本文介绍了如何利用IntelliJ IDEA中的BashSupport插件来增强Shell脚本的开发体验,包括插件的安装、配置以及脚本的运行方法。 ... [详细]
  • 本文详细介绍了Python中的生成器表达式、列表推导式、字典推导式及集合推导式等,探讨了它们之间的差异,并提供了丰富的代码示例。 ... [详细]
  • 2023年1月28日网络安全热点
    涵盖最新的网络安全动态,包括OpenSSH和WordPress的安全更新、VirtualBox提权漏洞、以及谷歌推出的新证书验证机制等内容。 ... [详细]
  • 汇总了2023年7月7日最新的网络安全新闻和技术更新,包括最新的漏洞披露、工具发布及安全事件。 ... [详细]
  • ED Tree HDU4812 点分治+逆元
    这道题非常巧妙!!!我们进行点分治的时候,算出当前子节点的所有子树中的节点,到当前节点节点的儿子节点的距离,如下图意思就是当前节点的红色节点,我们要求出红色节点的儿子节点绿色节点, ... [详细]
  • 本文详细介绍了如何在Windows和Linux系统上配置Openfire服务器,包括安装步骤、数据库配置及端口映射等关键环节。 ... [详细]
  • 本文详细介绍了如何使用Linux下的mysqlshow命令来查询MySQL数据库的相关信息,包括数据库、表以及字段的详情。通过本文的学习,读者可以掌握mysqlshow命令的基本语法及其常用选项。 ... [详细]
  • 本文详细探讨了如何根据不同的应用场景选择合适的PHP版本,包括多版本切换技巧、稳定性分析及针对WordPress等特定平台的版本建议。 ... [详细]
  • 本文探讨了如何使用Scrapy框架构建高效的数据采集系统,以及如何通过异步处理技术提升数据存储的效率。同时,文章还介绍了针对不同网站采用的不同采集策略。 ... [详细]
  • 实现Win10与Linux服务器的SSH无密码登录
    本文介绍了如何在Windows 10环境下使用Git工具,通过配置SSH密钥对,实现与Linux服务器的无密码登录。主要步骤包括生成本地公钥、上传至服务器以及配置服务器端的信任关系。 ... [详细]
  • 本文探讨了Linux环境下线程私有数据(Thread-Specific Data, TSD)的概念及其重要性,介绍了如何通过TSD技术避免多线程间全局变量冲突的问题,并提供了具体的实现方法和示例代码。 ... [详细]
  • 2019年独角兽企业招聘Python工程师标准课程概览
    本文详细介绍了2019年独角兽企业在招聘Python工程师时的标准课程内容,包括Shell脚本中的逻辑判断、文件属性判断、if语句的特殊用法及case语句的应用。 ... [详细]
  • 本文回顾了作者在求职阿里和腾讯实习生过程中,从最初的迷茫到最后成功获得Offer的心路历程。文中不仅分享了个人的面试经历,还提供了宝贵的面试准备建议和技巧。 ... [详细]
author-avatar
Susan林小夕
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有