热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

python数据结构之二叉树的遍历实例

这篇文章主要介绍了python数据结构之二叉树的递归遍历实例,需要的朋友可以参考下
遍历方案
 从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作:
 1).访问结点本身(N)
 2).遍历该结点的左子树(L)
 3).遍历该结点的右子树(R)

有次序:
 NLR、LNR、LRN

遍历的命名

 根据访问结点操作发生位置命名:
NLR:前序遍历(PreorderTraversal亦称(先序遍历)) ——访问结点的操作发生在遍历其左右子树之前。
LNR:中序遍历(InorderTraversal) ——访问结点的操作发生在遍历其左右子树之中(间)。
LRN:后序遍历(PostorderTraversal) ——访问结点的操作发生在遍历其左右子树之后。

注:由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtlee)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

遍历算法

1).先序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
a.访问根结点
b.遍历左子树
c.遍历右子树

2).中序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
a.遍历左子树
b.访问根结点
c.遍历右子树

3).后序遍历得递归算法定义:
若二叉树非空,则依次执行如下操作:
a.遍历左子树
b.遍历右子树
c.访问根结点

一、二叉树的递归遍历:

代码如下:


# -*- coding: utf - 8 - *-

class TreeNode(object):

def __init__(self, left=0, right=0, data=0):
self.left = left
self.right = right
self.data = data


class BTree(object):

def __init__(self, root=0):
self.root = root

def is_empty(self):
if self.root is 0:
return True
else:
return False

def preorder(self, treenode):
'前序(pre-order,NLR)遍历'
if treenode is 0:
return
print treenode.data
self.preorder(treenode.left)
self.preorder(treenode.right)

def inorder(self, treenode):
'中序(in-order,LNR'
if treenode is 0:
return
self.inorder(treenode.left)
print treenode.data
self.inorder(treenode.right)

def postorder(self, treenode):
'后序(post-order,LRN)遍历'
if treenode is 0:
return
self.postorder(treenode.left)
self.postorder(treenode.right)
print treenode.data


node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root')

bt = BTree(root)

print u'''

#生成的二叉树

# ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# -------------------------

'''
print '前序(pre-order,NLR)遍历 :\n'
bt.preorder(bt.root)

print '中序(in-order,LNR) 遍历 :\n'
bt.inorder(bt.root)

print '后序(post-order,LRN)遍历 :\n'
bt.postorder(bt.root)


二、.二叉树的非递归遍历

下面就用非递归的方式实现一遍。主要用到了 stack 和 queue维护一些数据节点:

代码如下:


# -*- coding: utf - 8 - *-


class TreeNode(object):

def __init__(self, left=0, right=0, data=0):
self.left = left
self.right = right
self.data = data


class BTree(object):

def __init__(self, root=0):
self.root = root

def is_empty(self):
if self.root is 0:
return True
else:
return False

def preorder(self, treenode):
'前序(pre-order,NLR)遍历'
stack = []
while treenode or stack:
if treenode is not 0:
print treenode.data
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
treenode = treenode.right

def inorder(self, treenode):
'中序(in-order,LNR) 遍历'
stack = []
while treenode or stack:
if treenode:
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
print treenode.data
treenode = treenode.right

# def postorder(self, treenode):
# stack = []
# pre = 0
# while treenode or stack:
# if treenode:
# stack.append(treenode)
# treenode = treenode.left
# elif stack[-1].right != pre:
# treenode = stack[-1].right
# pre = 0
# else:
# pre = stack.pop()
# print pre.data

def postorder(self, treenode):
'后序(post-order,LRN)遍历'
stack = []
queue = []
queue.append(treenode)
while queue:
treenode = queue.pop()
if treenode.left:
queue.append(treenode.left)
if treenode.right:
queue.append(treenode.right)
stack.append(treenode)
while stack:
print stack.pop().data

def levelorder(self, treenode):
from collections import deque
if not treenode:
return
q = deque([treenode])
while q:
treenode = q.popleft()
print treenode.data
if treenode.left:
q.append(treenode.left)
if treenode.right:
q.append(treenode.right)


node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root')


bt = BTree(root)

print u'''

#生成的二叉树

# ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# -------------------------

'''
print '前序(pre-order,NLR)遍历 :\n'
bt.preorder(bt.root)

print '中序(in-order,LNR) 遍历 :\n'
bt.inorder(bt.root)

print '后序(post-order,LRN)遍历 :\n'
bt.postorder(bt.root)

print '层序(level-order,LRN)遍历 :\n'
bt.levelorder(bt.root)

推荐阅读
  • 兆芯X86 CPU架构的演进与现状(国产CPU系列)
    本文详细介绍了兆芯X86 CPU架构的发展历程,从公司成立背景到关键技术授权,再到具体芯片架构的演进,全面解析了兆芯在国产CPU领域的贡献与挑战。 ... [详细]
  • Manacher算法详解:寻找最长回文子串
    本文将详细介绍Manacher算法,该算法用于高效地找到字符串中的最长回文子串。通过在字符间插入特殊符号,Manacher算法能够同时处理奇数和偶数长度的回文子串问题。 ... [详细]
  • 单片机编程为何偏爱C语言
    尽管现代有许多高级编程语言如Java、Python等,但单片机编程依然广泛使用C语言。本文将探讨C语言在单片机编程中的优势及其原因。 ... [详细]
  • A*算法在AI路径规划中的应用
    路径规划算法用于在地图上找到从起点到终点的最佳路径,特别是在存在障碍物的情况下。A*算法是一种高效且广泛使用的路径规划算法,适用于静态和动态环境。 ... [详细]
  • 短暂的人生中,IT和技术只是其中的一部分。无论换工作还是换行业,最终的目标是成功、荣誉和收获。本文探讨了技术人员如何跳出纯技术的局限,实现更大的职业发展。 ... [详细]
  • 机器学习算法:SVM(支持向量机)
    SVM算法(SupportVectorMachine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优, ... [详细]
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
  • 专业人士如何做自媒体 ... [详细]
  • 本文总结了《编程珠玑》第12章关于采样问题的算法描述与改进,并提供了详细的编程实践记录。参考了其他博主的总结,链接为:http://blog.csdn.net/neicole/article/details/8518602。 ... [详细]
  • 三角测量计算三维坐标的代码_双目三维重建——层次化重建思考
    双目三维重建——层次化重建思考FesianXu2020.7.22atANTFINANCIALintern前言本文是笔者阅读[1]第10章内容的笔记,本文从宏观的角度阐 ... [详细]
  • 非计算机专业的朋友如何拿下多个Offer
    大家好,我是归辰。秋招结束后,我已顺利入职,并应公子龙的邀请,分享一些秋招面试的心得体会,希望能帮助到学弟学妹们,让他们在未来的面试中更加顺利。 ... [详细]
  • PHP实现汉诺塔算法
    昨天研究了一天汉诺塔算法都没搞懂,感觉自己智商被碾压了,还不如《猩球崛起》中的那一只猩猩!!!起源传说最早发明这个问题的人是法国数学家『爱德华·卢卡斯』。在世界中心贝拿勒斯(在印度 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 本文介绍了如何通过路由汇总和无类域间路由(CIDR)技术来优化路由表,减少路由条目数量,提高网络效率。具体案例展示了路由汇总的实现方法及其对网络性能的影响。 ... [详细]
  • 双指针法在链表问题中应用广泛,能够高效解决多种经典问题,如合并两个有序链表、合并多个有序链表、查找倒数第k个节点等。本文将详细介绍这些应用场景及其解决方案。 ... [详细]
author-avatar
mobiledu2502898417
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有