热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

polar神经网络DNN译码训练

     输出层没有添加激活函数softmax 虽然loss的值不高,但是accuracy的值也很低,虽然训练集的loss一致在下降,但是测试集的loss却在震荡,几乎不变。不知道

 

 

 

 

 

输出层没有添加激活函数softmax

 虽然loss的值不高,但是accuracy的值也很低,虽然训练集的loss一致在下降,但是测试集的loss却在震荡,几乎不变。不知道该怎么解决。——2019.11.28   11:29

 

输出层添加了softmax激活函数之后:

 

 

 

 

 为什么验证集的Loss降到一半就再不降了??是因为过拟合了吗?看别人的说法是梯度爆炸,让减小学习率,但是现在学习率是0.001,已经比较小了。

 准确率并没有提升,loss也比不添加softmax时要大,而且测试集与验证集的loss差不多。——11:33

 

试试再次降低学习率为0.0001:

 

 

验证集的loss差不多保持在0.2.

 

 

训练的acc在上升,验证集的acc在下降,这应该是过拟合了,接下来减少神经网络层数,隐藏层由128-64-32变成了64-32:

 

 

 

 

验证集的acc稍微有所改善,应该加大epochs,由500增加到1000试试:

 

 

 

 

 

 什么用也没有。。。

问题出在哪里?loss勉强可以,但是acc死活上不去。。。

 

 

这个说法和我的情况很像,还是要自己写一个性能函数。



 

跑不正确的实际情况是我没把数据集生成对,在师兄的帮助下,成功生成了数据集,在没有编码的情况下,得到如下实验结果:——2019.11.29  9:09

 

 

 

 迭代次数为100000.

模型保存为

model.save('polar_dnn_16_8.h5')

这是未编码训练模型。

 

根据自己写的acc性能函数,跑出来测试集的误块率为78%,太高了。正确率22%

 

 计算了一下误码率17.2%,正确率83.8%

 

 



 

加入编码过程, 运行结果如下图所示:

 

 但是正确率还是达不到百分之90以上。

 

 

不知道这个为什么会先降低后升高。验证集的loss比未编码之间要高。迭代40000次的时候就已经收敛了。

 

 由图可知,错误率为9.05%,正确率为84%。

然后跑一下自己写的性能函数:

误块率80.7%,误码率22.1%

 

还是很差劲。。。

 

 

 

 

 



推荐阅读
  • 信用评分卡的Python实现与评估
    本文介绍如何使用Python构建和评估信用评分卡模型,涵盖数据预处理、模型训练及验证指标选择。附带详细代码示例和视频教程链接。 ... [详细]
  • 卷积神经网络(CNN)基础理论与架构解析
    本文介绍了卷积神经网络(CNN)的基本概念、常见结构及其各层的功能。重点讨论了LeNet-5、AlexNet、ZFNet、VGGNet和ResNet等经典模型,并详细解释了输入层、卷积层、激活层、池化层和全连接层的工作原理及优化方法。 ... [详细]
  • 山东高校教师职称改革:12位教师因绩效不佳被降级
    近期,《学知报》发表了一篇关于威海职业学院教育改革进展的文章。文章指出,尽管一些改革措施仍在试验阶段,但该学院决心通过深化改革提升教学质量。 ... [详细]
  • TWEN-ASR 语音识别入门:运行首个程序
    本文详细介绍了如何使用TWEN-ASR ONE开发板运行第一个语音识别程序,包括开发环境搭建、代码编写、下载和调试等步骤。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 本文档旨在帮助开发者回顾游戏开发中的人工智能技术,涵盖移动算法、群聚行为、路径规划、脚本AI、有限状态机、模糊逻辑、规则式AI、概率论与贝叶斯技术、神经网络及遗传算法等内容。 ... [详细]
  • 本文深入探讨了《Crossing the Line: Crowd Counting by Integer Programming with Local Features》论文的核心技术与应用,包括ROI(感兴趣区域)和LOI(感兴趣线)的概念,以及HOG特征的详细解析。 ... [详细]
  • 本文探讨了亚马逊Go如何通过技术创新推动零售业的发展,以及面临的市场和隐私挑战。同时,介绍了亚马逊最新的‘刷手支付’技术及其潜在影响。 ... [详细]
  • 基于2-channelnetwork的图片相似度判别一、相关理论本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《LearningtoCompar ... [详细]
  • 在上一篇文章中,我们初步探讨了神经网络的基础概念,并通过一个简单的例子——将摄氏度转换为华氏度——介绍了单个神经元的工作原理。本文将继续探索神经网络的应用,特别是如何构建一个基本的分类器。 ... [详细]
  • 利用Java与Tesseract-OCR实现数字识别
    本文深入探讨了如何利用Java语言结合Tesseract-OCR技术来实现图像中的数字识别功能,旨在为开发者提供详细的指导和实践案例。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 回顾与学习是进步的阶梯。再次审视卷积神经网络(CNNs),我对之前不甚明了的概念有了更深的理解。本文旨在分享这些新的见解,并探讨CNNs在图像识别和自然语言处理等领域中的实际应用。 ... [详细]
  • 目标检测之Loss:softmaxLoss和Cross Entropy的讲解
    最大似然估计:就是什么样的参数才能使我们观测的这组数据的概率最大化.;我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(poolin ... [详细]
  • 李宏毅机器学习笔记:无监督学习之线性方法
    无监督学习主要涵盖两大类别:一是聚类与降维,旨在简化数据结构;二是生成模型,用于从编码生成新的数据样本。本文深入探讨了这些技术的具体应用和理论基础。 ... [详细]
author-avatar
亲亲萌萌baby0106_671
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有