热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

NoSQL历史简介

什么是NoSQL随着用户内容的增长,所生成、处理、分析和归档的数据的规模快速增大,类型也快速增多。此外,一些新数据源也在生成大量数据,比如传感器、全球定位系统(GPS)、自动追踪器和监控系统。这些大数据集通常被称为大数据。数据不仅仅快速增长,而且

什么是NoSQL 随着用户内容的增长,所生成、处理、分析和归档的数据的规模快速增大,类型也快速增多。此外,一些新数据源也在生成大量数据,比如传感器、全球定位系统(GPS)、自动追踪器和监控系统。这些大数据集通常被称为大数据。数据不仅仅快速增长,而且

什么是NoSQL

  随着用户内容的增长,所生成、处理、分析和归档的数据的规模快速增大,类型也快速增多。此外,一些新数据源也在生成大量数据,比如传感器、全球定位系统(GPS)、自动追踪器和监控系统。这些大数据集通常被称为大数据。数据不仅仅快速增长,免备案空间,而且半结构化和稀疏的趋势也很明显。这样一来,预定义好schema和利用关系型引用的传统数据管理技术就受到了挑战。

  在探索海量数据和半结构化数据相关问题的过程中,诞生了一系列新型数据库产品,其中包括列族数据库(column-oriented data store)、键/值数据库和文档数据库,这些数据库统称NoSQL。

  今天NoSQL泛指这样一类数据库和数据存储,它们不遵循经典RDBMS原理,且常与Web规模的大型数据集有关。换句话说,NoSQL并不单指一个产品或一种技术,它代表一族产品,以及一系列不同的、有时相互关联的、有关数据存储及处理的概念。

  RDBMS假定数据的结构已明确定义,数据是致密的,并且很大程度上是一致的。RDBMS构建在这样的先决条件上,即数据的属性可以预先定义好,它们之间的相互关系非常稳固且被系统地引用(systematically referenced)。它还假定定义在数据上的索引能保持一致性,能统一应用以提高查询的速度。RDBMS可以容忍一定程度的不规律和结构缺乏,但在松散结构的海量稀疏数据面前,传统存储机制和访问方法捉襟见肘。
NoSQL缓解了RDBMS引发的问题并降低了处理海量稀疏数据的难度,但是反过来也被夺去了事务完整性的力量和灵活的索引及查询能力。

  总之,NoSQL数据库是非常高效、强大的海量数据存储与处理工具。大部分NoSQL数据库都能很好地适应数据增长,并且能灵活适应半结构化数据和稀疏数据集。

背景和历史

  Google建造了大规模可扩展的基础设施,用于支撑Google的搜索引擎和其他应用。其策略是在应用程序栈的每个层面上分别解决问题,旨在建立一套可伸缩的基础设施来并行处理海量数据。为此Google创建了一整套完备的机制,包括分布式文件系统、面向列族的数据存储、分布式协调系统和基于MapReduce的并行算法执行环境。

  Google公开发布了一系列论文来解释其基础设施中一些关键的组成部分:

Sanjay Ghemawat、Howard Gobioff和Shun-Tak Leung,“The Google File System”; pub.19th ACM Symposium on Operating Systems Principles, Lake George, NY, October 2003
Jeffrey Dean和Sanjay Ghemawat,“MapReduce: Simplified Data Processing on Large Clusters”; pub. OSDI’04: Sixth Symposium on Operating System Design and Implementation, San Francisco, CA, December 2004。
Fay Chang、Jeffrey Dean、Sanjay Ghemawat、Wilson C. Hsieh、Deborah A. Wallach、Mike Burrows、Tushar Chandra、Andrew Fikes和Robert E. Gruber,“Bigtable: A Distributed Storage System for Structured Data”; pub. OSDI’06: Seventh Symposium on Operating System Design and Implementation, Seattle, WA, November 2006。
Mike Burrows,“The Chubby Lock Service for Loosely-Coupled Distributed Systems”; pub.OSDI’06: Seventh Symposium on Operating System Design and Implementation, Seattle, WA, November 2006。

Google 云端三大天王分別是: The Google File System, MapReduce, Bigtable
下面是中文翻译版
GFS:
MapReduce:
BigTale:

  Google公布设计理念引起了开源开发者的广泛关注和浓厚兴趣。很快,虚拟主机,第一个模仿Google基础设施部分特性的开源软件就开发出来了,它的创建者正是开源搜索引擎Lucene的发明人。紧接着,Lucene的核心开发者们加入了Yahoo!,在那里,依靠众多开源贡献者的支持,参照Google的分布式计算架构,开发者们创建出了一个能够替代Google基础设施所有部分的开源产品,这就是Hadoop及其子项目和相关项目。

  Google的论文激发了人们对并行大规模处理和分布式非关系型数据存储的兴趣,一年后,Amazon分享了他们的成功经验。2007年Amazon对外展示了它的分布式高可用、最终一致性数据存储,其名曰Dynamo。

有关Amazon Dynamo的内容可以参考如下论文:
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami Sivasubramanian, Peter Vosshall, and Werner Vogels,“Dynamo: Amazon’s Highly Available Key/value Store,”in the Proceedings of the 21st ACM Symposium on Operating Systems Principles, Stevenson, WA, October 2007。(中文版:点击下载)

  此外,Amazon的CTO Werner Vogels在一篇博文中解释了Amazon Dynamo背后的关键思想,博文地址为:

大数据

就现在而言,任何超过几个TB大小的数据集都可以归为大数据。这是数据集大到开始跨越多个存储单元的典型尺寸,也是传统RDBMS技术开始表现出吃力的尺寸。
随着数据规模的增长和数据创建来源的日趋多元化,以下挑战将日益严峻。
·高效存储和访问大量数据很难。额外要求的容错和备份使事情变得更加复杂。
·操作大数据集涉及大量并行进程。运行过程中要从任何故障中平稳恢复过来,同时还要在合理的时间范围内返回结果,这非常复杂。
·各种不同数据源生成的半结构化和无结构数据的schema和元数据持续不断变化,对它们的管理是一个令人头疼的问题。

可扩展性

  可扩展性是一种能力,有了它系统能通过增加资源提高吞吐量进而解决增加的负荷。可扩展性可以通过两种方式实现,一是配置一个大而强的资源来满足额外的需求,二是依靠由普通机器组成的集群。使用大而强的机器通常属于垂直可扩展性。典型的垂直扩展方案是使用配有大量CPU内核且直接挂载大量存储的超级计算机。这类超级计算机通常极其昂贵,属于专有设备。替代垂直扩展的是水平扩展。水平扩展使用商业系统集群,集群随负载的增加而扩展。水平扩展通常需要添加额外的节点来应付额外的负载。大数据以及大规模并行处理数据的需要促使水平扩展得到了广泛的采纳。在Google、Amazon、Facebook、eBay和Yahoo!,水平扩展的基础设施包含数量巨大的服务器,其中一些包含几千甚至几十万台服务器。
  对水平扩展集群上分布的数据进行处理是非常复杂的事情。在水平集群上处理大规模数据的方法里,MapReduce模型可能要算是最好的。

MapReduce
推荐阅读
  • 本文详细介绍了如何搭建一个高可用的MongoDB集群,包括环境准备、用户配置、目录创建、MongoDB安装、配置文件设置、集群组件部署等步骤。特别关注分片、读写分离及负载均衡的实现。 ... [详细]
  • 深入理解云计算与大数据技术
    本文详细探讨了云计算与大数据技术的关键知识点,包括大数据处理平台、社会网络大数据、城市大数据、工业大数据、教育大数据、数据开放与共享的应用,以及搜索引擎与Web挖掘、推荐技术的研究及应用。文章还涵盖了云计算的基础概念、特点和服务类型分类。 ... [详细]
  • 深入解析:存储技术的演变与发展
    本文探讨了从单机文件系统到分布式文件系统的存储技术发展过程,详细解释了各种存储模型及其特点。 ... [详细]
  • 2020年9月15日,Oracle正式发布了最新的JDK 15版本。本次更新带来了许多新特性,包括隐藏类、EdDSA签名算法、模式匹配、记录类、封闭类和文本块等。 ... [详细]
  • 2012年9月12日优酷土豆校园招聘笔试题目解析与备考指南
    2012年9月12日,优酷土豆校园招聘笔试题目解析与备考指南。在选择题部分,有一道题目涉及中国人的血型分布情况,具体为A型30%、B型20%、O型40%、AB型10%。若需确保在随机选取的样本中,至少有一人为B型血的概率不低于90%,则需要选取的最少人数是多少?该问题不仅考察了概率统计的基本知识,还要求考生具备一定的逻辑推理能力。 ... [详细]
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • 本文详细记录了 MIT 6.824 课程中 MapReduce 实验的开发过程,包括环境搭建、实验步骤和具体实现方法。 ... [详细]
  • 对象存储与块存储、文件存储等对比
    看到一篇文档,讲对象存储,好奇,搜索文章,摘抄,学习记录!背景:传统存储在面对海量非结构化数据时,在存储、分享与容灾上面临很大的挑战,主要表现在以下几个方面:传统存储并非为非结 ... [详细]
  • 本文介绍了Memcached分布式集群中的取模算法和一致性哈希算法的原理及其对缓存命中率的影响。通过详细分析,探讨了如何优化这些算法以提高系统的稳定性和性能。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • Presto:高效即席查询引擎的深度解析与应用
    本文深入解析了Presto这一高效的即席查询引擎,详细探讨了其架构设计及其优缺点。Presto通过内存到内存的数据处理方式,显著提升了查询性能,相比传统的MapReduce查询,不仅减少了数据传输的延迟,还提高了查询的准确性和效率。然而,Presto在大规模数据处理和容错机制方面仍存在一定的局限性。本文还介绍了Presto在实际应用中的多种场景,展示了其在大数据分析领域的强大潜力。 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • 在前一篇文章《Hadoop》系列之“踽踽独行”(二)中,我们详细探讨了云计算的核心概念。本章将重点转向物联网技术,全面解析其基本原理、应用场景及未来发展前景。通过深入分析物联网的架构和技术栈,我们将揭示其在智能城市、工业自动化和智能家居等领域的广泛应用潜力。此外,还将讨论物联网面临的挑战,如数据安全和隐私保护等问题,并展望其在未来技术融合中的重要角色。 ... [详细]
  • PHP中元素的计量单位是什么? ... [详细]
  • 在Hive中合理配置Map和Reduce任务的数量对于优化不同场景下的性能至关重要。本文探讨了如何控制Hive任务中的Map数量,分析了当输入数据超过128MB时是否会自动拆分,以及Map数量是否越多越好的问题。通过实际案例和实验数据,本文提供了具体的配置建议,帮助用户在不同场景下实现最佳性能。 ... [详细]
author-avatar
一种姿态获得无可取代
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有