热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python多线程爬虫简单示例

这篇文章主要为大家详细介绍了Python多线程爬虫简单示例,感兴趣的小伙伴们可以参考一下
python是支持多线程的,主要是通过thread和threading这两个模块来实现的。thread模块是比较底层的模块,threading模块是对thread做了一些包装的,可以更加方便的使用。

虽然python的多线程受GIL限制,并不是真正的多线程,但是对于I/O密集型计算还是能明显提高效率,比如说爬虫。

下面用一个实例来验证多线程的效率。代码只涉及页面获取,并没有解析出来。

# -*-coding:utf-8 -*-
import urllib2, time
import threading
 
 
class MyThread(threading.Thread):
  def __init__(self, func, args):
    threading.Thread.__init__(self)
    self.args = args
    self.func = func
 
  def run(self):
    apply(self.func, self.args)
 
 
def open_url(url):
  request = urllib2.Request(url)
  html = urllib2.urlopen(request).read()
  print len(html)
  return html
 
if __name__ == '__main__':
  # 构造url列表
  urlList = []
  for p in range(1, 10):
    urlList.append('http://s.wanfangdata.com.cn/Paper.aspx?q=%E5%8C%BB%E5%AD%A6&p=' + str(p))
   
  # 一般方式
  n_start = time.time()
  for each in urlList:
    open_url(each)
  n_end = time.time()
  print 'the normal way take %s s' % (n_end-n_start)
   
  # 多线程
  t_start = time.time()
  threadList = [MyThread(open_url, (url,)) for url in urlList]
  for t in threadList:
    t.setDaemon(True)
    t.start()
  for i in threadList:
    i.join()
  t_end = time.time()
  print 'the thread way take %s s' % (t_end-t_start)

分别用两种方式获取10个访问速度比较慢的网页,一般方式耗时50s,多线程耗时10s。

多线程代码解读:

# 创建线程类,继承Thread类
class MyThread(threading.Thread):
  def __init__(self, func, args):
    threading.Thread.__init__(self) # 调用父类的构造函数
    self.args = args
    self.func = func
 
  def run(self): # 线程活动方法
    apply(self.func, self.args)
  

threadList = [MyThread(open_url, (url,)) for url in urlList] # 调用线程类创建新线程,返回线程列表
  for t in threadList:
    t.setDaemon(True) # 设置守护线程,父线程会等待子线程执行完后再退出
    t.start() # 线程开启
  for i in threadList:
    i.join() # 等待线程终止,等子线程执行完后再执行父线程

以上就是本文的全部内容,希望对大家的学习有所帮助。

推荐阅读
  • 探讨HTML中的DIV样式难题
    本文深入分析了HTML中常见的DIV样式问题,并提供了有效的解决策略。适合所有对Web前端开发感兴趣的读者。 ... [详细]
  • Python3 中使用 lxml 模块解析 XPath 数据详解
    XPath 是一种用于在 XML 文档中查找信息的路径语言,同样适用于 HTML 文件的搜索。本文将详细介绍如何利用 Python 的 lxml 模块通过 XPath 技术高效地解析和抓取网页数据。 ... [详细]
  • PHP 中 preg_match 函数的 isU 修饰符详解
    本文详细解析 PHP 中 preg_match 函数中 isU 修饰符的具体含义及其应用场景,帮助开发者更好地理解和使用正则表达式。 ... [详细]
  • 本文将介绍如何利用Python爬虫技术抓取国内主流在线学习平台的数据,并以51CTO学院为例,进行详细的技术解析和实践操作。 ... [详细]
  • Scrapy:强大的Python爬虫框架
    Scrapy是一个基于Python的高效网页爬取框架,利用Twisted异步网络库实现高效的网络通信。其架构设计精巧,包括核心组件如引擎、调度器、下载器等,旨在简化大规模数据抓取过程。 ... [详细]
  • Python 内存管理机制详解
    本文深入探讨了Python的内存管理机制,涵盖了垃圾回收、引用计数和内存池机制。通过具体示例和专业解释,帮助读者理解Python如何高效地管理和释放内存资源。 ... [详细]
  • 目录一、salt-job管理#job存放数据目录#缓存时间设置#Others二、returns模块配置job数据入库#配置returns返回值信息#mysql安全设置#创建模块相关 ... [详细]
  • Python自动化测试入门:Selenium环境搭建
    本文详细介绍如何在Python环境中安装和配置Selenium,包括开发工具PyCharm的安装、Python环境的设置以及Selenium包的安装方法。此外,还提供了编写和运行第一个自动化测试脚本的步骤。 ... [详细]
  • Java 中重写与重载的区别
    本文详细解析了 Java 编程语言中重写(Override)和重载(Overload)的概念及其主要区别,帮助开发者更好地理解和应用这两种多态性机制。 ... [详细]
  • MySQL Debug 模式的实现与应用
    本文详细介绍了如何启用和使用 MySQL 的调试模式,包括编译选项、环境变量配置以及调试信息的解析。通过实际案例展示了如何利用调试模式解决客户端无法连接服务器的问题。 ... [详细]
  • 本文介绍了如何在Django项目中使用django-crontab库来设置和管理定时任务,包括安装、配置、编写定时任务以及常见问题的解决方案。通过具体实例,帮助开发者快速掌握在Django中实现自动化任务的方法。 ... [详细]
  • 本文介绍了如何利用Java中的URLConnection类来实现基本的网络爬虫功能,包括向目标网站发送请求、接收HTML响应、解析HTML以提取所需信息,并处理可能存在的递归爬取需求。 ... [详细]
  • 深入分析十大PHP开发框架
    随着PHP技术的发展,各类开发框架层出不穷,成为了开发者们热议的话题。本文将详细介绍并对比十款主流的PHP开发框架,旨在帮助开发者根据自身需求选择最合适的工具。 ... [详细]
  • 前端开发中的代码注释实践与规范
    本文探讨了前端开发过程中代码注释的重要性,不仅有助于个人清晰地回顾自己的编程思路,还能促进团队成员之间的有效沟通。文章将详细介绍HTML、CSS及JavaScript中的注释使用方法,并提出一套实用的注释规范。 ... [详细]
  • 探讨GET与POST请求数据传输的最大容量
    在Web开发领域,GET和POST是最常见的两种数据传输方法。本文将深入探讨这两种请求方式在不同环境下的数据传输能力及其限制。 ... [详细]
author-avatar
rachel_wxh_614
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有