作者:飞翔的小鸟52588 | 来源:互联网 | 2018-07-18 04:27
本文实例讲述了Python聚类算法之凝聚层次聚类。分享给大家供大家参考,具体如下:
凝聚层次聚类:所谓凝聚的,指的是该算法初始时,将每个点作为一个簇,每一步合并两个最接近的簇。另外即使到最后,对于噪音点或是离群点也往往还是各占一簇的,除非过度合并。对于这里的“最接近”,有下面三种定义。我在实现是使用了MIN,该方法在合并时,只要依次取当前最近的点对,如果这个点对当前不在一个簇中,将所在的两个簇合并就行:
单链(MIN):定义簇的邻近度为不同两个簇的两个最近的点之间的距离。
全链(MAX):定义簇的邻近度为不同两个簇的两个最远的点之间的距离。
组平均:定义簇的邻近度为取自两个不同簇的所有点对邻近度的平均值。
# scoding=utf-8
# Agglomerative Hierarchical Clustering(AHC)
import pylab as pl
from operator import itemgetter
from collections import OrderedDict,Counter
points = [[int(eachpoint.split('#')[0]), int(eachpoint.split('#')[1])] for eachpoint in open("points","r")]
# 初始时每个点指派为单独一簇
groups = [idx for idx in range(len(points))]
# 计算每个点对之间的距离
disP2P = {}
for idx1,point1 in enumerate(points):
for idx2,point2 in enumerate(points):
if (idx1 finalGroupNum:
# 选取下一个距离最近的点对
twopoins,distance = disP2P.popitem()
pointA = int(twopoins.split('#')[0])
pointB = int(twopoins.split('#')[1])
pointAGroup = groups[pointA]
pointBGroup = groups[pointB]
# 当前距离最近两点若不在同一簇中,将点B所在的簇中的所有点合并到点A所在的簇中,此时当前簇数减1
if(pointAGroup != pointBGroup):
for idx in range(len(groups)):
if groups[idx] == pointBGroup:
groups[idx] = pointAGroup
groupNum -= 1
# 选取规模最大的3个簇,其他簇归为噪音点
wantGroupNum = 3
finalGroup = Counter(groups).most_common(wantGroupNum)
finalGroup = [onecount[0] for onecount in finalGroup]
dropPoints = [points[idx] for idx in range(len(points)) if groups[idx] not in finalGroup]
# 打印规模最大的3个簇中的点
group1 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[0]]
group2 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[1]]
group3 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[2]]
pl.plot([eachpoint[0] for eachpoint in group1], [eachpoint[1] for eachpoint in group1], 'or')
pl.plot([eachpoint[0] for eachpoint in group2], [eachpoint[1] for eachpoint in group2], 'oy')
pl.plot([eachpoint[0] for eachpoint in group3], [eachpoint[1] for eachpoint in group3], 'og')
# 打印噪音点,黑色
pl.plot([eachpoint[0] for eachpoint in dropPoints], [eachpoint[1] for eachpoint in dropPoints], 'ok')
pl.show()
运行效果截图如下:
希望本文所述对大家Python程序设计有所帮助。