热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

pandas数据分析(二)

文章目录

文章目录

  • DataFrame数据处理与分析
    • 读取Excel文件中的数据
    • 筛选符合特定条件的数据
    • 查看数据特征和统计信息
    • 按不同标准对数据排序
    • 使用分组与聚合对员工业绩进行汇总


DataFrame数据处理与分析

部分数据如下
在这里插入图片描述
这个数据百度可以搜到,就是下面这个
在这里插入图片描述

读取Excel文件中的数据

import pandas as pd
pd.set_option('display.unicode.ambiguous_as_wide',True)
pd.set_option('display.unicode.east_asian_width',True)
#usecols指定要读取的列的索引或名字
df=pd.read_excel(r'C:\Users\dell\Desktop\超市营业额2.xlsx',usecols=['工号','姓名','时段','交易额'])
print(df[:10],end='\n\n')#输出前10行数据

在这里插入图片描述

#读取第一个worksheet中所有列
#跳过第1、3、5行,指定下标为1的列中数据为DataFrame的行索引标签
df=pd.read_excel(r'C:\Users\dell\Desktop\超市营业额2.xlsx',skiprows=[1,3,5],index_col=1)
print(df[:10])

在这里插入图片描述

筛选符合特定条件的数据

#读取全部数据,使用默认索引
df=pd.read_excel(r'C:\Users\dell\Desktop\超市营业额2.xlsx')

#下标在[5,10]区间的行,切片限定的是左闭右开区间
df[5:11]

在这里插入图片描述

#iloc使用整数做索引
df.iloc[5]#索引为5的行

在这里插入图片描述

df.iloc[[3,5,10]]#下标为[3,5,10]的行

在这里插入图片描述

df.iloc[[3,5,10],[0,1,4]]#行下标[3,5,10],列下标[0,1,4]

在这里插入图片描述

df[['姓名','时段','交易额']][:5]#指定的列前5行的数据

在这里插入图片描述

df[:10][['姓名','日期','柜台']]#只查看前10行指定的列

在这里插入图片描述

df.loc[[3,5,10],['姓名','交易额']]#下标为[3,5,10]行的指定列

在这里插入图片描述

df.at[3,'姓名']#行下标为3,姓名列的值'赵六'

#如果有报错,看看柜台列的字符是不是跑到交易额列去了
#因为交易额有几个是空值,直接复制来的数据可能位置不对
print(df[df['交易额']>1700])#交易额高于1700元的数据

在这里插入图片描述

df['交易额'].sum()#交易总额327257.0

#注意这个数据里是中文冒号
df[df['时段']=='14:00-21:00']['交易额'].sum()#下午班的交易总额151228.0

#张三下午班的交易情况
df[(df.姓名=='张三')&(df.时段=='14:00-21:00')]

在这里插入图片描述

#日用品柜台销售总额
df[df['柜台']=='日用品']['交易额'].sum()88162.0

#张三和李四2人销售总额
df[df['姓名'].isin(['张三','李四'])]['交易额'].sum()116860.0

#交易额在指定范围内的记录
df[df['交易额'].between(800,850)]

在这里插入图片描述

查看数据特征和统计信息

#查看交易额统计信息
df['交易额'].describe()

在这里插入图片描述

#交易额四分位数
df['交易额'].quantile([0,0.25,0.5,0.75,1.0])

在这里插入图片描述

#交易额中值
df['交易额'].median()1259.0

#交易额最小的3条记录
df.nsmallest(3,'交易额')

在这里插入图片描述

#交易额最大的3条记录
df.nlargest(3,'交易额')

在这里插入图片描述

#最后一个日期
df['日期'].max()Timestamp('2019-03-31 00:00:00')

#最小的工号
df['工号'].min()1001

#第一个最小交易额的行下标
index=df['交易额'].idxmin()
print(index)
#第一个最小交易额
print(df.loc[index,'交易额'])76
53.0

#第一个最大交易额的行下标
index=df['交易额'].idxmax()
print(index)
#第一个最大交易额
print(df.loc[index,'交易额'])105
12100.0

按不同标准对数据排序

#按交易额和工号降序排序
df.sort_values(by=['交易额','工号'],ascending=False)

在这里插入图片描述

#按交易额降序、工号升序排序
df.sort_values(by=['交易额','工号'],ascending=[False,True])

在这里插入图片描述

#按工号升序排序,na_position指定缺失值放在最前面/后面,first/last
df.sort_values(by='工号',na_position='last')

在这里插入图片描述

#按列名升序排序
#汉字的Unicode编码排序
df.sort_values(by='姓名',ascending=True)

在这里插入图片描述

使用分组与聚合对员工业绩进行汇总

#index对5求余,然后求和
df.groupby(by=lambda num:num%5)['交易额'].sum()

在这里插入图片描述

#根据指定字典的键对index进行分组,值为index标签
df.groupby(by={7:'下标为7的行',35:'下标为35的行'})['交易额'].sum()

在这里插入图片描述

#不同时段的销售总额
df.groupby(by='时段')['交易额'].sum()

某行数据有问题,但无伤大雅,重要的是方法
在这里插入图片描述

#各柜台销售总额
df.groupby(by='柜台')['交易额'].sum()

在这里插入图片描述

#查看每个员工上班总时长是否均匀
ddf=df.groupby(by='姓名')['日期'].count()
ddf.name='上班次数'
ddf

在这里插入图片描述

#每个员工交易额的平均值
df.groupby(by='姓名')['交易额'].mean().round(2).sort_values()

在这里插入图片描述

#汇总交易额转换为整数
df.groupby(by='姓名').sum()['交易额'].apply(int)

在这里插入图片描述

#每个员工交易额的中值
df.groupby(by='姓名')['交易额'].median()

在这里插入图片描述

# 每个员工交易额中值的排名
dff=df.groupby(by='姓名').median()
dff['排名']=dff['交易额'].rank(ascending=False)
dff[['交易额','排名']]

在这里插入图片描述

# 每个员工不同时段的交易额
df.groupby(by=['姓名','时段'])['交易额'].sum()

在这里插入图片描述

# 时段和交易额采用不同的聚合方式
df.groupby(by=['姓名'])['时段','交易额'].aggregate({'交易额':['sum'],'时段':lambda x:'各时段累计'})

在这里插入图片描述

# 使用DataFrame结构的agg()方法对指定列进行聚合
df.agg({'交易额':['sum','mean','min','max','median'],'日期':['min','max']})

在这里插入图片描述

# 对分组结果进行聚合
df.groupby(by='姓名').agg(['max','min','mean','median'])[['工号','交易额']]

在这里插入图片描述


推荐阅读
  • 探讨了在使用Layui框架时,如何处理表格中固定列与其他列行高不一致的情况,提供了有效的解决方案。 ... [详细]
  • 智慧城市建设现状及未来趋势
    随着新基建政策的推进及‘十四五’规划的实施,我国正步入以5G、人工智能等先进技术引领的智慧经济新时代。规划强调加速数字化转型,促进数字政府建设,新基建政策亦倡导城市基础设施的全面数字化。本文探讨了智慧城市的发展背景、全球及国内进展、市场规模、架构设计,以及百度、阿里、腾讯、华为等领军企业在该领域的布局策略。 ... [详细]
  • 目录一、salt-job管理#job存放数据目录#缓存时间设置#Others二、returns模块配置job数据入库#配置returns返回值信息#mysql安全设置#创建模块相关 ... [详细]
  • 本文详细介绍了优化DB2数据库性能的多种方法,涵盖统计信息更新、缓冲池调整、日志缓冲区配置、应用程序堆大小设置、排序堆参数调整、代理程序管理、锁机制优化、活动应用程序限制、页清除程序配置、I/O服务器数量设定以及编入组提交数调整等方面。通过这些技术手段,可以显著提升数据库的运行效率和响应速度。 ... [详细]
  • 主调|大侠_重温C++ ... [详细]
  • 本文介绍了一个基于 Java SpringMVC 和 SSM 框架的综合系统,涵盖了操作日志记录、文件管理、头像编辑、权限控制、以及多种技术集成如 Shiro、Redis 等,旨在提供一个高效且功能丰富的开发平台。 ... [详细]
  • 解决Spring Boot项目创建失败的问题
    在尝试创建新的Spring Boot项目时遇到了一些问题,具体表现为在项目创建过程中的两个关键步骤出现错误。本文将详细探讨这些问题及其解决方案。 ... [详细]
  • Python库在GIS与三维可视化中的应用
    Python库极大地扩展了GIS的能力,使其能够执行复杂的数据科学任务。本文探讨了几个关键的Python库,这些库不仅增强了GIS的核心功能,还推动了地理信息系统向更高层次的应用发展。 ... [详细]
  • 本文探讨了在使用OleDb提供程序读取Excel文件时,在IIS环境中遇到的行数读取不足的问题,并提供了相应的解决方案。 ... [详细]
  • 导入大csv文件到mysql(CSV导入) ... [详细]
  • 随着数据量的增长,手动处理Excel文件变得越来越耗时且容易出错。本文介绍如何利用编程工具自动化Excel文件处理流程,以提高效率并减少错误。 ... [详细]
  • 基于机器学习的人脸识别系统实现
    本文介绍了一种使用机器学习技术构建人脸识别系统的实践案例。通过结合Python编程语言和深度学习框架,详细展示了从数据预处理到模型训练的完整流程,并提供了代码示例。 ... [详细]
  • 基于Node.js、Express、MongoDB和Socket.io的实时聊天应用开发
    本文详细介绍了使用Node.js、Express、MongoDB和Socket.io构建的实时聊天应用程序。涵盖项目结构、技术栈选择及关键依赖项的配置。 ... [详细]
  • 本文深入探讨了SQL数据库中常见的面试问题,包括如何获取自增字段的当前值、防止SQL注入的方法、游标的作用与使用、索引的形式及其优缺点,以及事务和存储过程的概念。通过详细的解答和示例,帮助读者更好地理解和应对这些技术问题。 ... [详细]
  • RStudio 1.4安装指南及使用说明
    RStudio 1.4 是一款强大的集成开发环境(IDE),专为 R 语言编程设计。它提供了简洁直观的用户界面和丰富的功能,能够显著提升数据科学家和程序员的工作效率。本文将详细介绍其安装步骤和主要特性。 ... [详细]
author-avatar
82年的老代码
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有