作者:呆保保_369 | 来源:互联网 | 2024-11-03 18:32
在Python3中,Pandas库是处理时间序列数据的强大工具。本文将详细介绍如何利用Pandas的各种功能高效地进行时间数据的清洗、转换和分析。通过具体的示例和代码片段,读者可以掌握如何读取、格式化、重采样和可视化时间数据,从而提升数据处理的效率和准确性。
dates = ['2017-06-20','2017-06-21',\
'2017-06-22','2017-06-23','2017-06-24','2017-06-25','2017-06-26','2017-06-27']
import numpy as np
ts = pd.Series(np.random.randn(8),index = pd.to_datetime(dates))
ts
2017-06-20 0.788811
2017-06-21 0.372555
2017-06-22 0.009967
2017-06-23 -1.024626
2017-06-24 0.981214
2017-06-25 0.314127
2017-06-26 -0.127258
2017-06-27 1.919773
dtype: float64
ts.index
DatetimeIndex(['2017-06-20', '2017-06-21', '2017-06-22', '2017-06-23',
'2017-06-24', '2017-06-25', '2017-06-26', '2017-06-27'],
dtype='datetime64[ns]', freq=None)
ts[::2]#从前往后每隔两个取数据
2017-06-20 0.788811
2017-06-22 0.009967
2017-06-24 0.981214
2017-06-26 -0.127258
dtype: float64
ts[::-2]#从后往前逆序每隔两个取数据
2017-06-27 1.919773
2017-06-25 0.314127
2017-06-23 -1.024626
2017-06-21 0.372555
dtype: float64
ts + ts[::2]#自动数据对齐
2017-06-20 1.577621
2017-06-21 NaN
2017-06-22 0.019935
2017-06-23 NaN
2017-06-24 1.962429
2017-06-25 NaN
2017-06-26 -0.254516
2017-06-27 NaN
dtype: float64
PyThon学习网教学中心