热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

pandas100个骚操作四:再见for循环!速度提升315倍,pandas速度优化方法

大家好,我是你们的东哥。本篇是pandas100个骚操作的第4篇:再见for循环!速度提升315倍,pandas速度优化方法查看全部骚操作可以点击专栏:pandas100个骚操作因



大家好,我是你们的东哥。

本篇是pandas100个骚操作的第4篇:再见for循环!速度提升315倍,pandas速度优化方法

查看全部骚操作可以点击专栏:pandas 100个骚操作



因为for是所有编程语言的基础语法,初学者为了快速实现功能,依懒性较强。但如果从优雅性和运算时间性能上考虑可能不是特别好的选择。

本次东哥介绍几个常见的提速方法,一个比一个快,了解pandas本质,才能知道如何提速。

下面是一个例子。

>>> import pandas as pd
# 导入数据集
>>> df = pd.read_csv('demand_profile.csv')
>>> df.head()
date_time energy_kwh
0 1/1/13 0:00 0.586
1 1/1/13 1:00 0.580
2 1/1/13 2:00 0.572
3 1/1/13 3:00 0.596
4 1/1/13 4:00 0.592

基于上面的数据,我们现在要增加一个新的特征,但这个新的特征是基于一些时间条件生成的,根据时长(小时)而变化,如下:

在这里插入图片描述

因此,如果你不知道如何提速,那正常第一想法可能就是用apply方法写一个函数,函数里面写好时间条件的逻辑代码。

def apply_tariff(kwh, hour):
"""计算每个小时的电费"""
if 0 <= hour <7:
rate = 12
elif 7 <= hour <17:
rate = 20
elif 17 <= hour <24:
rate = 28
else:
raise ValueError(f'Invalid hour: {hour}')
return rate * kwh

然后使用for循环来遍历df,根据apply函数逻辑添加新的特征,如下:

>>> # 不赞同这种操作
>>> @timeit(repeat=3, number=100)
... def apply_tariff_loop(df):
... """用for循环计算enery cost,并添加到列表"""
... energy_cost_list = []
... for i in range(len(df)):
... # 获取用电量和时间(小时)
... energy_used = df.iloc[i]['energy_kwh']
... hour = df.iloc[i]['date_time'].hour
... energy_cost = apply_tariff(energy_used, hour)
... energy_cost_list.append(energy_cost)
... df['cost_cents'] = energy_cost_list
...
>>> apply_tariff_loop(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_loop` ran in average of 3.152 seconds.

对于那些写Pythonic风格的人来说,这个设计看起来很自然。然而,这个循环将会严重影响效率。原因有几个:

首先,它需要初始化一个将记录输出的列表。

其次,它使用不透明对象范围(0,len(df))循环,然后再应用apply_tariff()之后,它必须将结果附加到用于创建新DataFrame列的列表中。另外,还使用df.iloc [i]['date_time']执行所谓的链式索引,这通常会导致意外的结果。

这种方法的最大问题是计算的时间成本。对于8760行数据,此循环花费了3秒钟。

接下来,一起看下优化的提速方案。


一、使用 iterrows循环

第一种可以通过pandas引入iterrows方法让效率更高。这些都是一次产生一行的生成器方法,类似scrapy中使用的yield用法。

.itertuples为每一行产生一个namedtuple,并且行的索引值作为元组的第一个元素。nametuplePythoncollections模块中的一种数据结构,其行为类似于Python元组,但具有可通过属性查找访问的字段。

.iterrowsDataFrame中的每一行产生(index,series)这样的元组。

在这个例子中使用.iterrows,我们看看这使用iterrows后效果如何。

>>> @timeit(repeat=3, number=100)
... def apply_tariff_iterrows(df):
... energy_cost_list = []
... for index, row in df.iterrows():
... # 获取用电量和时间(小时)
... energy_used = row['energy_kwh']
... hour = row['date_time'].hour
... # 添加cost列表
... energy_cost = apply_tariff(energy_used, hour)
... energy_cost_list.append(energy_cost)
... df['cost_cents'] = energy_cost_list
...
>>> apply_tariff_iterrows(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_iterrows` ran in average of 0.713 seconds.

这样的语法更明确,并且行值引用中的混乱更少,因此它更具可读性。

时间成本方面:快了近5倍!

但是,还有更多的改进空间,理想情况是可以用pandas内置更快的方法完成。


二、pandas的apply方法

我们可以使用.apply方法而不是.iterrows进一步改进此操作。pandas.apply方法接受函数callables并沿DataFrame的轴(所有行或所有列)应用。下面代码中,lambda函数将两列数据传递给apply_tariff()

>>> @timeit(repeat=3, number=100)
... def apply_tariff_withapply(df):
... df['cost_cents'] = df.apply(
... lambda row: apply_tariff(
... kwh=row['energy_kwh'],
... hour=row['date_time'].hour),
... axis=1)
...
>>> apply_tariff_withapply(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_withapply` ran in average of 0.272 seconds.

apply的语法优点很明显,行数少,代码可读性高。在这种情况下,所花费的时间大约是iterrows方法的一半。

但是,这还不是“非常快”。一个原因是apply()将在内部尝试循环遍历Cython迭代器。但是在这种情况下,传递的lambda不是可以在Cython中处理的东西,因此它在Python中调用并不是那么快。

如果我们使用apply()方法获取10年的小时数据,那么将需要大约15分钟的处理时间。如果这个计算只是大规模计算的一小部分,那么真的应该提速了。这也就是矢量化操作派上用场的地方。


三、矢量化操作:使用.isin选择数据

什么是矢量化操作?

如果你不基于一些条件,而是可以在一行代码中将所有电力消耗数据应用于该价格:df ['energy_kwh'] * 28,类似这种。那么这个特定的操作就是矢量化操作的一个例子,它是在pandas中执行的最快方法。

但是如何将条件计算应用为pandas中的矢量化运算?

一个技巧是:根据你的条件,选择和分组DataFrame,然后对每个选定的组应用矢量化操作。

在下面代码中,我们将看到如何使用pandas.isin()方法选择行,然后在矢量化操作中实现新特征的添加。在执行此操作之前,如果将date_time列设置为DataFrame的索引,会更方便:

# 将date_time列设置为DataFrame的索引
df.set_index('date_time', inplace=True)
@timeit(repeat=3, number=100)
def apply_tariff_isin(df):
# 定义小时范围Boolean数组
peak_hours = df.index.hour.isin(range(17, 24))
shoulder_hours = df.index.hour.isin(range(7, 17))
off_peak_hours = df.index.hour.isin(range(0, 7))
# 使用上面apply_traffic函数中的定义
df.loc[peak_hours, 'cost_cents'] = df.loc[peak_hours, 'energy_kwh'] * 28
df.loc[shoulder_hours,'cost_cents'] = df.loc[shoulder_hours, 'energy_kwh'] * 20
df.loc[off_peak_hours,'cost_cents'] = df.loc[off_peak_hours, 'energy_kwh'] * 12

我们来看一下结果如何。

>>> apply_tariff_isin(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_isin` ran in average of 0.010 seconds.

提示,上面.isin()方法返回的是一个布尔值数组,如下:

[False, False, False, ..., True, True, True]

布尔值标识了DataFrame索引datetimes是否落在了指定的小时范围内。然后把这些布尔数组传递给DataFrame.loc,将获得一个与这些小时匹配的DataFrame切片。然后再将切片乘以适当的费率,这就是一种快速的矢量化操作了。

上面的方法完全取代了我们最开始自定义的函数apply_tariff(),代码大大减少,同时速度起飞。

运行时间比Pythonic的for循环快315倍,比.iterrows快71倍,比.apply快27倍!


四、还能更快?

太刺激了,我们继续加速。

在上面apply_tariff_isin中,我们通过调用df.locdf.index.hour.isin三次来进行一些手动调整。如果我们有更精细的时间范围,你可能会说这个解决方案是不可扩展的。但在这种情况下,我们可以使用pandaspd.cut()函数来自动完成切割:

@timeit(repeat=3, number=100)
def apply_tariff_cut(df):
cents_per_kwh = pd.cut(x=df.index.hour,
bins=[0, 7, 17, 24],
include_lowest=True,
labels=[12, 20, 28]).astype(int)
df['cost_cents'] = cents_per_kwh * df['energy_kwh']

上面代码pd.cut()会根据bin列表应用分组。

其中include_lowest参数表示第一个间隔是否应该是包含左边的。

这是一种完全矢量化的方法,它在时间方面是最快的:

>>> apply_tariff_cut(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_cut` ran in average of 0.003 seconds.

到目前为止,使用pandas处理的时间上基本快达到极限了!只需要花费不到一秒的时间即可处理完整的10年的小时数据集。

但是,最后一个其它选择,就是使用 NumPy,还可以更快!


五、使用Numpy继续加速

使用pandas时不应忘记的一点是PandasSeriesDataFrames是在NumPy库之上设计的。并且,pandas可以与NumPy阵列和操作无缝衔接。

下面我们使用NumPydigitize()函数更进一步。它类似于上面pandascut(),因为数据将被分箱,但这次它将由一个索引数组表示,这些索引表示每小时所属的bin。然后将这些索引应用于价格数组:

@timeit(repeat=3, number=100)
def apply_tariff_digitize(df):
prices = np.array([12, 20, 28])
bins = np.digitize(df.index.hour.values, bins=[7, 17, 24])
df['cost_cents'] = prices[bins] * df['energy_kwh'].values

cut函数一样,这种语法非常简洁易读。

>>> apply_tariff_digitize(df)
Best of 3 trials with 100 function calls per trial:
Function `apply_tariff_digitize` ran in average of 0.002 seconds.

0.002秒! 虽然仍有性能提升,但已经很边缘化了。

以上就是本次加速的技巧分享。样本数据可在公众号Python数据科学回复:加速 获取。

我是东哥,和我一起学pandas100个骚操作。



推荐阅读
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • java文本编辑器,java文本编辑器设计思路
    java文本编辑器,java文本编辑器设计思路 ... [详细]
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • 社交网络中的级联行为 ... [详细]
  • 深入解析Java枚举及其高级特性
    本文详细介绍了Java枚举的概念、语法、使用规则和应用场景,并探讨了其在实际编程中的高级应用。所有相关内容已收录于GitHub仓库[JavaLearningmanual](https://github.com/Ziphtracks/JavaLearningmanual),欢迎Star并持续关注。 ... [详细]
  • 本文将探讨2015年RCTF竞赛中的一道PWN题目——shaxian,重点分析其利用Fastbin和堆溢出的技巧。通过详细解析代码流程和漏洞利用过程,帮助读者理解此类题目的破解方法。 ... [详细]
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
  • 本文详细介绍了 Python 中的条件语句和循环结构。主要内容包括:1. 分支语句(if...elif...else);2. 循环语句(for, while 及嵌套循环);3. 控制循环的语句(break, continue, else)。通过具体示例,帮助读者更好地理解和应用这些语句。 ... [详细]
  • 本文旨在探讨如何利用决策树算法实现对男女性别的分类。通过引入信息熵和信息增益的概念,结合具体的数据集,详细介绍了决策树的构建过程,并展示了其在实际应用中的效果。 ... [详细]
  • 理解与应用:独热编码(One-Hot Encoding)
    本文详细介绍了独热编码(One-Hot Encoding)与哑变量编码(Dummy Encoding)两种方法,用于将分类变量转换为数值形式,以便于机器学习算法处理。文章不仅解释了这两种编码方式的基本原理,还探讨了它们在实际应用中的差异及选择依据。 ... [详细]
  • 本文介绍如何使用 Python 的 Pandas 库中 Series 对象的 round() 方法,对数值进行四舍五入处理。该方法在数据预处理和分析中非常有用。 ... [详细]
  • 本文详细介绍了如何在C#程序运行期间防止系统进入休眠模式以及显示器关闭,提供了具体的实现代码示例,并解释了其应用场景。这不仅有助于提高程序的稳定性,还能优化能源管理。适合需要处理长时间任务(如下载或批处理)的开发者参考。 ... [详细]
  • 本文探讨了如何利用HTML5和JavaScript在浏览器中进行本地文件的读取和写入操作,并介绍了获取本地文件路径的方法。HTML5提供了一系列API,使得这些操作变得更加简便和安全。 ... [详细]
  • 主板市盈率、市净率及股息率的自动化抓取
    本文介绍了如何通过Python脚本自动从中国指数有限公司网站抓取主板的市盈率、市净率和股息率等关键财务指标,并将这些数据存储到CSV文件中。涉及的技术包括网页解析、正则表达式以及异常处理。 ... [详细]
author-avatar
mobiledu2502911607
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有