热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

numpy警告信息和scipy的导入imread错误

numpy要求大于1.13.3当前为1.17.4Requirementalreadysatisfied:numpy1.13.3inhomezzn.locallibpython3.

numpy要求大于1.13.3 当前为1.17.4
Requirement already satisfied:numpy>=1.13.3 in /home/zzn/.local/lib/python3.6/site-packages (from tensorflow-gpu==1.12) (1.17.4)


1.

导入tf警告:

FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'._np_qint8 = np.dtype([("qint8", np.int8, 1)])

等等
换版本为1.16.0试试

pip uninstall numpy
pip install numpy=1.16.0

不再报警告信息。(当前环境:py36tf12)


2.

from scipy.misc import imread, imresize, imsave
ImportError: cannot import name 'imread'

更改scipy版本为1.2.1 还是不行
然后下载pillow再安装scipy1.2.1
不再报错


推荐阅读
  • 在Windows命令行中,通过Conda工具可以高效地管理和操作虚拟环境。具体步骤包括:1. 列出现有虚拟环境:`conda env list`;2. 创建新虚拟环境:`conda create --name 环境名`;3. 删除虚拟环境:`conda env remove --name 环境名`。这些命令不仅简化了环境管理流程,还提高了开发效率。此外,Conda还支持环境文件导出和导入,方便在不同机器间迁移配置。 ... [详细]
  • 本文详细介绍了在 CentOS 7 系统中安装 Python 3.7 的步骤,包括编译工具的安装、Python 3.7 源码的下载与编译、软链接的创建以及常见错误的处理方法。 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 本文介绍了如何使用 Google Colab 的免费 GPU 资源进行深度学习应用开发。Google Colab 是一个无需配置即可使用的云端 Jupyter 笔记本环境,支持多种深度学习框架,并且提供免费的 GPU 计算资源。 ... [详细]
  • 在Windows系统中安装TensorFlow GPU版的详细指南与常见问题解决
    在Windows系统中安装TensorFlow GPU版是许多深度学习初学者面临的挑战。本文详细介绍了安装过程中的每一个步骤,并针对常见的问题提供了有效的解决方案。通过本文的指导,读者可以顺利地完成安装并避免常见的陷阱。 ... [详细]
  • 本文提供了PyTorch框架中常用的预训练模型的下载链接及详细使用指南,涵盖ResNet、Inception、DenseNet、AlexNet、VGGNet等六大分类模型。每种模型的预训练参数均经过精心调优,适用于多种计算机视觉任务。文章不仅介绍了模型的下载方式,还详细说明了如何在实际项目中高效地加载和使用这些模型,为开发者提供全面的技术支持。 ... [详细]
  • 本文探讨了Python类型注解使用率低下的原因,主要归结于历史背景和投资回报率(ROI)的考量。文章不仅分析了类型注解的实际效用,还回顾了Python类型注解的发展历程。 ... [详细]
  • 本文将详细探讨 Python 编程语言中 sys.argv 的使用方法及其重要性。通过实际案例,我们将了解如何在命令行环境中传递参数给 Python 脚本,并分析这些参数是如何被处理和使用的。 ... [详细]
  • 深入体验Python的高级交互式Shell - IPython
    IPython 是一个增强型的 Python 交互式 Shell,提供了比标准 Python 控制台更为强大的功能,适用于开发和调试过程。它不仅支持直接执行 Linux 命令,还提供了丰富的特性来提高编程效率。 ... [详细]
  • Android与JUnit集成测试实践
    本文探讨了如何在Android项目中集成JUnit进行单元测试,并详细介绍了修改AndroidManifest.xml文件以支持测试的方法。 ... [详细]
  • 在使用Python 3.x的argparse模块时,如果输入参数中包含&符号,会遇到解析错误。本文介绍了如何解决这一问题,确保输入参数能够正确解析。 ... [详细]
  • 在Conda环境中高效配置并安装PyTorch和TensorFlow GPU版的方法如下:首先,创建一个新的Conda环境以避免与基础环境发生冲突,例如使用 `conda create -n pytorch_gpu python=3.7` 命令。接着,激活该环境,确保所有依赖项都正确安装。此外,建议在安装过程中指定CUDA版本,以确保与GPU兼容性。通过这些步骤,可以确保PyTorch和TensorFlow GPU版的顺利安装和运行。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 在Windows环境下离线安装PyTorch GPU版时,首先需确认系统配置,例如本文作者使用的是Win8、CUDA 8.0和Python 3.6.5。用户应根据自身Python和CUDA版本,在PyTorch官网查找并下载相应的.whl文件。此外,建议检查系统环境变量设置,确保CUDA路径正确配置,以避免安装过程中可能出现的兼容性问题。 ... [详细]
  • Web动态服务器Python基本实现
    Web动态服务器Python基本实现 ... [详细]
author-avatar
mobiledu2502906183
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有