热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

ngram_NGram

一、什么是N-Gram

一、什么是N-Gram

 N-Gram是一种统计语言模型,用来根据前(n-1)个item来预测第n个item。在应用层面,这些item字符(输入法应用)等。一般来讲,可以从大规模文本或音频语料库生成N-Gram模型。 习惯上,1-gram叫unigram,2-gram称为bigram,3-gram是trigram。还有four-gram、five-gram等,不过大于n>5的应用很少见。

 

 N-Gram语言模型的思想,可以追溯到信息论大师香农的研究工作,他提出一个问题:给定一串字母,如”for ex”,下一个最大可能性出现的字母是什么。从训练语料数据中,我们可以通过极大似然估计的方法,得到N个概率分布:是a的概率是0.4,是b的概率是0.0001,是c的概率是…,当然,别忘记约束条件:所有的N个概率分布的总和为1

 

 N-Gram模型概率公式推导。根据条件概率和乘法公式:( P(B|A) = frac{P(A,B)}{P(A)} ),假设一个序列T由( A_1,A_2,A_3,...,A_n)组成,那么(P(T) )的概率为:

( P(A_1A_2A_3...A_n) = P(A_1)*P(A_2|A_1)*P(A_3|A_2,A_1)*...*P(A_n|A_1,A_2,...,A_{n-1}) )其中( P(A_1,A_2,...,A_{n-1}) > 0 )

 如果直接这么计算,是有很大困难的,需要引入马尔科夫假设,即:一个item的出现概率,只与其前m个items有关,当m=0时,就是unigram,m=1时,是bigram模型,m=2时,是trigram模型。例如当m=2时,上述(P(T) )的概率为:

( P(A_1A_2A_3...A_n) = P(A_1)*P(A_2|A_1)*P(A_3|A_2)*P(A_4|A_3)*...*P(A_n|A_{n-1}) )

 而( P(A_n|A_{n-1}) )条件概率可以通过极大似然估计求得,等于:( Count(A_{n-1},A_n)/Count(An-1) )

 

二、实例讲解N-Gram的一个应用 

 二元语言模型判断句子是否合理:假设现在有一个语料库,我们统计了下面的一些词出现的数量

技术分享图片

 下面的这些概率值作为已知条件:

 ( P(i | ) = 0.25, P(|food) = 0.68,P(want | ) = 0.25 )

 下面这个表给出的是基于Bigram模型进行计数之结果:

技术分享图片

 

 例如,其中第一行,第二列表示给定前一个词是 “i” 时,当前词为“want”的情况一共出现了827次。据此,我们便可以算得相应的频率分布表如下:

技术分享图片

 

 比如说,我们就以表中的( P(eat|i)=0.0036 )这个概率值讲解,从表一得出“i”一共出现了2533次,而其后出现eat的次数一共有9次,( P(eat|i)=P(eat,i)/P(i)=count(eat,i)/count(i)=9/2533 = 0.0036 )

 

 下面我们通过基于这个语料库来判断s1=“ i want chinese food” 与s2 = " want i chinese food"哪个句子更合理:通过例子来讲解是最人性化的(其中涉及的概率查上表)

 首先来判断P(s1) :( P(s1)=P(i|)P(want|i)P(chinese|want)P(food|chinese)P(|food)=0.25*0.33*0.0065*0.52*0.68 = 0.000189618)

 再来求P(s2):( P(s2)=P(want|)P(i|want)P(chinese|want)P(food|chinese)P(|food) = 0.25*0.0022*0.0065*0.52*0.68 = 0.00000126412)

 通过比较我们可以明显发现P(s2) i want chinese food"更像人话。再深层次的分析,我们可以看到这两个句子的概率的不同,主要是由于顺序i want还是want i的问题,根据我们的直觉和常用搭配语法,i want要比want i出现的几率要大很多。所以两者的差异,第一个概率大,第二个概率小,也就能说的通了

 

 N-gram模型的一个常见应用

 

  搜索引擎(Google或者Baidu)、或者输入法的猜想或者提示。你在用谷歌时,输入一个或几个词,搜索框通常会以下拉菜单的形式给出几个像下图一样的备选,这些备选其实是在猜想你想要搜索的那个词串。

  再者,当你用输入法输入一个汉字的时候,输入法通常可以联系出一个完整的词,例如我输入一个“刘”字,通常输入法会提示我是否要输入的是“刘备”。通过上面的介绍,你应该能够很敏锐的发觉,这其实是以N-Gram模型为基础来实现的。比如下图:

  技术分享图片

 

  那么原理是什么呢?也就是我打入“我们”的时候,后面的“不一样”,”的爱“这些是怎么出来的,怎么排序的?实际上是根据语言模型得出。假如使用的是二元语言模型预测下一个单词:

  排序的过程就是:p(”不一样“|"我们")>p(”的爱“|"我们")>p(”相爱吧“|"我们")>.......>p("这一家"|”我们“),这些概率值的求法和上面提到的完全一样,数据的来源可以是用户搜索的log。

 

三、n-gram的n大小对性能的影响

 n越大,对下一个词出现的约束性信息更多,更大的辨别力,但是更稀疏,并且n-gram的总数也更多,为 V^n个(V为词汇表的大小)

 n越小,在训练语料库中出现的次数更多,更可靠的统计结果,更高的可靠性 ,但是约束信息更少,其中当N为特定值的时候,我们来看一下n-gram可能的总数,如下表:

技术分享图片

 

 对于上图,用一个例子来进行解释,加入目前词汇表中就只有三个单词,”我爱你“,那么bigram的总数是3^2=9个,有”我我“,我爱,我你,爱爱,爱你,爱我,你你,你我,你爱这9个,所以对应上面的表示是bigrams是20000^2=400,000,000,trigrams=20000^3 = 8,000,000,000,000

 

四、N-Gram模型的缺点

 不过,Ngram模型有其局限性:

  首先,由于参数空间的爆炸式增长,它无法处理更长程的context(N > 3)N>3">

  其次,它没有考虑词与词之间内在的联系性。例如,考虑"the cat is walking in the bedroom"这句话。如果我们在训练语料中看到了很多类似“the dog is walking in the bedroom”或是“the cat is running in the bedroom”这样的句子,那么,即使我们没有见过这句话,也可以从“cat”和“dog”(“walking”和“running”)之间的相似性,推测出这句话的概率。然而, Ngram模型做不到。这是因为,Ngram本质上是将词当做一个个孤立的原子单元去处理的。这种处理方式对应到数学上的形式是一个个离散的one-hot向量。例如,对于一个大小为5的词典:{"I", "love", "nature", "luaguage", "processing"},“nature”对应的one-hot向量为:[0,0,1,0,0],显然,one-hot向量的维度等于词典的大小。这在动辄上万甚至百万词典的实际应用中,面临着巨大的维度灾难问题。

 

 



推荐阅读
  • 初探PLC 的ST 语言转换成C++ 的方法
    自动控制软件绕不开ST(StructureText)语言。它是IEC61131-3标准中唯一的一个高级语言。目前,大多数PLC产品支持ST ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • Iamtryingtomakeaclassthatwillreadatextfileofnamesintoanarray,thenreturnthatarra ... [详细]
  • 云原生边缘计算之KubeEdge简介及功能特点
    本文介绍了云原生边缘计算中的KubeEdge系统,该系统是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于Kubernetes构建,并为网络应用程序提供基础架构支持。同时,KubeEdge具有离线模式、基于Kubernetes的节点、群集、应用程序和设备管理、资源优化等特点。此外,KubeEdge还支持跨平台工作,在私有、公共和混合云中都可以运行。同时,KubeEdge还提供数据管理和数据分析管道引擎的支持。最后,本文还介绍了KubeEdge系统生成证书的方法。 ... [详细]
  • 本文讨论了在Windows 8上安装gvim中插件时出现的错误加载问题。作者将EasyMotion插件放在了正确的位置,但加载时却出现了错误。作者提供了下载链接和之前放置插件的位置,并列出了出现的错误信息。 ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • 本文介绍了如何使用php限制数据库插入的条数并显示每次插入数据库之间的数据数目,以及避免重复提交的方法。同时还介绍了如何限制某一个数据库用户的并发连接数,以及设置数据库的连接数和连接超时时间的方法。最后提供了一些关于浏览器在线用户数和数据库连接数量比例的参考值。 ... [详细]
  • 本文介绍了使用PHP实现断点续传乱序合并文件的方法和源码。由于网络原因,文件需要分割成多个部分发送,因此无法按顺序接收。文章中提供了merge2.php的源码,通过使用shuffle函数打乱文件读取顺序,实现了乱序合并文件的功能。同时,还介绍了filesize、glob、unlink、fopen等相关函数的使用。阅读本文可以了解如何使用PHP实现断点续传乱序合并文件的具体步骤。 ... [详细]
  • 本文讨论了在Spring 3.1中,数据源未能自动连接到@Configuration类的错误原因,并提供了解决方法。作者发现了错误的原因,并在代码中手动定义了PersistenceAnnotationBeanPostProcessor。作者删除了该定义后,问题得到解决。此外,作者还指出了默认的PersistenceAnnotationBeanPostProcessor的注册方式,并提供了自定义该bean定义的方法。 ... [详细]
  • 索引库类似于查字典的检索表或图书馆的书目检索,是搜索引擎将抓取的网页放入的地方。索引库通过词语来分类,利用固定数量的词语进行分类,方便搜索引擎匹配用户查询的词语。本文介绍了索引库的分类方式及其好处。 ... [详细]
  • Ubuntu安装常用软件详细步骤
    目录1.GoogleChrome浏览器2.搜狗拼音输入法3.Pycharm4.Clion5.其他软件1.GoogleChrome浏览器通过直接下载安装GoogleChro ... [详细]
  • 本文介绍了机器学习手册中关于日期和时区操作的重要性以及其在实际应用中的作用。文章以一个故事为背景,描述了学童们面对老先生的教导时的反应,以及上官如在这个过程中的表现。同时,文章也提到了顾慎为对上官如的恨意以及他们之间的矛盾源于早年的结局。最后,文章强调了日期和时区操作在机器学习中的重要性,并指出了其在实际应用中的作用和意义。 ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • Week04面向对象设计与继承学习总结及作业要求
    本文总结了Week04面向对象设计与继承的重要知识点,包括对象、类、封装性、静态属性、静态方法、重载、继承和多态等。同时,还介绍了私有构造函数在类外部无法被调用、static不能访问非静态属性以及该类实例可以共享类里的static属性等内容。此外,还提到了作业要求,包括讲述一个在网上商城购物或在班级博客进行学习的故事,并使用Markdown的加粗标记和语句块标记标注关键名词和动词。最后,还提到了参考资料中关于UML类图如何绘制的范例。 ... [详细]
  • 本文介绍了DataTables插件的官方网站以及其基本特点和使用方法,包括分页处理、数据过滤、数据排序、数据类型检测、列宽度自动适应、CSS定制样式、隐藏列等功能。同时还介绍了其易用性、可扩展性和灵活性,以及国际化和动态创建表格的功能。此外,还提供了参数初始化和延迟加载的示例代码。 ... [详细]
author-avatar
多米音乐_54101533
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有