热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

hashmap实现原理浅析

看了下JAVA里面有HashMap、Hashtable、HashSet三种hash集合的实现源码,这里总结下,理解错误的地方还望指正HashMap和Hashtable的区别HashSet和HashMa

看了下JAVA里面有HashMap、Hashtable、HashSet三种hash集合的实现源码,这里总结下,理解错误的地方还望指正

HashMap和Hashtable的区别

HashSet和HashMap、Hashtable的区别

HashMap和Hashtable的实现原理

HashMap的简化实现MyHashMap

 

HashMap和Hashtable的区别
  1. 两者最主要的区别在于Hashtable是线程安全,而HashMap则非线程安全
    Hashtable的实现方法里面都添加了synchronized关键字来确保线程同步,因此相对而言HashMap性能会高一些,我们平时使用时若无特殊需求建议使用HashMap,在多线程环境下若使用HashMap需要使用Collections.synchronizedMap()方法来获取一个线程安全的集合(Collections.synchronizedMap()实现原理是Collections定义了一个SynchronizedMap的内部类,这个类实现了Map接口,在调用方法时使用synchronized来保证线程同步,当然了实际上操作的还是我们传入的HashMap实例,简单的说就是Collections.synchronizedMap()方法帮我们在操作HashMap时自动添加了synchronized来实现线程同步,类似的其它Collections.synchronizedXX方法也是类似原理
  2. HashMap可以使用null作为key,而Hashtable则不允许null作为key
    虽说HashMap支持null值作为key,不过建议还是尽量避免这样使用,因为一旦不小心使用了,若因此引发一些问题,排查起来很是费事
    HashMap以null作为key时,总是存储在table数组的第一个节点上
  3. HashMap是对Map接口的实现,HashTable实现了Map接口和Dictionary抽象类
  4. HashMap的初始容量为16,Hashtable初始容量为11,两者的填充因子默认都是0.75
    HashMap扩容时是当前容量翻倍即:capacity*2,Hashtable扩容时是容量翻倍+1即:capacity*2+1
  5. 两者计算hash的方法不同
    Hashtable计算hash是直接使用key的hashcode对table数组的长度直接进行取模
    int hash = key.hashCode();
    int index = (hash & 0x7FFFFFFF) % tab.length;

    HashMap计算hash对key的hashcode进行了二次hash,以获得更好的散列值,然后对table数组长度取摸

    static int hash(int h) {
    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).
    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
    }

    static int indexFor(int h, int length) {
    return h & (length-1);
    }

     

  6. HashMap和Hashtable的底层实现都是数组+链表结构实现
HashSet和HashMap、Hashtable的区别

除开HashMap和Hashtable外,还有一个hash集合HashSet,有所区别的是HashSet不是key value结构,仅仅是存储不重复的元素,相当于简化版的HashMap,只是包含HashMap中的key而已

通过查看源码也证实了这一点,HashSet内部就是使用HashMap实现,只不过HashSet里面的HashMap所有的value都是同一个Object而已,因此HashSet也是非线程安全的,至于HashSet和Hashtable的区别,HashSet就是个简化的HashMap的,所以你懂的
下面是HashSet几个主要方法的实现

  private transient HashMap map;
private static final Object PRESENT = new Object();
public HashSet() {
map
= new HashMap();
}
public boolean contains(Object o) {
return map.containsKey(o);
}
public boolean add(E e) {
return map.put(e, PRESENT)==null;
}
public boolean add(E e) {
return map.put(e, PRESENT)==null;
}
public boolean remove(Object o) {
return map.remove(o)==PRESENT;
}


public void clear() {
map.clear();
}

 

HashMap和Hashtable的实现原理

HashMap和Hashtable的底层实现都是数组+链表结构实现的,这点上完全一致

添加、删除、获取元素时都是先计算hash,根据hash和table.length计算index也就是table数组的下标,然后进行相应操作,下面以HashMap为例说明下它的简单实现

  /**
* HashMap的默认初始容量 必须为2的n次幂
*/
static final int DEFAULT_INITIAL_CAPACITY = 16;

/**
* HashMap的最大容量,可以认为是int的最大值
*/
static final int MAXIMUM_CAPACITY = 1 <<30;

/**
* 默认的加载因子
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;

/**
* HashMap用来存储数据的数组
*/
transient Entry[] table;
  • HashMap的创建
    HashMap默认初始化时会创建一个默认容量为16的Entry数组,默认加载因子为0.75,同时设置临界值为16*0.75
        /**
    * Constructs an empty HashMap with the default initial capacity
    * (16) and the default load factor (0.75).
    */
    public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    threshold
    = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
    table
    = new Entry[DEFAULT_INITIAL_CAPACITY];
    init();
    }

     

  • put方法
    HashMap会对null值key进行特殊处理,总是放到table[0]位置
    put过程是先计算hash然后通过hash与table.length取摸计算index值,然后将key放到table[index]位置,当table[index]已存在其它元素时,会在table[index]位置形成一个链表,将新添加的元素放在table[index],原来的元素通过Entry的next进行链接,这样以链表形式解决hash冲突问题,当元素数量达到临界值(capactiy*factor)时,则进行扩容,是table数组长度变为table.length*2
  •  public V put(K key, V value) {
    if (key == null)
    return putForNullKey(value); //处理null值
    int hash = hash(key.hashCode());//计算hash
    int i = indexFor(hash, table.length);//计算在数组中的存储位置
    //遍历table[i]位置的链表,查找相同的key,若找到则使用新的value替换掉原来的oldValue并返回oldValue
    for (Entry e = table[i]; e != null; e = e.next) {
    Object k;
    if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
    V oldValue
    = e.value;
    e.value
    = value;
    e.recordAccess(
    this);
    return oldValue;
    }
    }
    //若没有在table[i]位置找到相同的key,则添加key到table[i]位置,新的元素总是在table[i]位置的第一个元素,原来的元素后移
    modCount++;
    addEntry(hash, key, value, i);
    return null;
    }


    void addEntry(int hash, K key, V value, int bucketIndex) {
    //添加key到table[bucketIndex]位置,新的元素总是在table[bucketIndex]的第一个元素,原来的元素后移
    Entry e = table[bucketIndex];
    table[bucketIndex]
    = new Entry(hash, key, value, e);
    //判断元素个数是否达到了临界值,若已达到临界值则扩容,table长度翻倍
    if (size++ >= threshold)
    resize(
    2 * table.length);
    }

     

  • get方法
    同样当key为null时会进行特殊处理,在table[0]的链表上查找key为null的元素
    get的过程是先计算hash然后通过hash与table.length取摸计算index值,然后遍历table[index]上的链表,直到找到key,然后返回
    public V get(Object key) {
    if (key == null)
    return getForNullKey();//处理null值
    int hash = hash(key.hashCode());//计算hash
    //在table[index]遍历查找key,若找到则返回value,找不到返回null
    for (Entry e = table[indexFor(hash, table.length)];
    e
    != null;
    e
    = e.next) {
    Object k;
    if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
    return e.value;
    }
    return null;
    }

     

  • remove方法
    remove方法和put get类似,计算hash,计算index,然后遍历查找,将找到的元素从table[index]链表移除
        public V remove(Object key) {
    Entry
    e = removeEntryForKey(key);
    return (e == null ? null : e.value);
    }
    final Entry removeEntryForKey(Object key) {
    int hash = (key == null) ? 0 : hash(key.hashCode());
    int i = indexFor(hash, table.length);
    Entry
    prev = table[i];
    Entry
    e = prev;

    while (e != null) {
    Entry
    next = e.next;
    Object k;
    if (e.hash == hash &&
    ((k
    = e.key) == key || (key != null && key.equals(k)))) {
    modCount
    ++;
    size
    --;
    if (prev == e)
    table[i]
    = next;
    else
    prev.next
    = next;
    e.recordRemoval(
    this);
    return e;
    }
    prev
    = e;
    e
    = next;
    }

    return e;
    }

     

  • resize方法
    resize方法在hashmap中并没有公开,这个方法实现了非常重要的hashmap扩容,具体过程为:先创建一个容量为table.length*2的新table,修改临界值,然后把table里面元素计算hash值并使用hash与table.length*2重新计算index放入到新的table里面
    这里需要注意下是用每个元素的hash全部重新计算index,而不是简单的把原table对应index位置元素简单的移动到新table对应位置
    void resize(int newCapacity) {
    Entry[] oldTable
    = table;
    int oldCapacity = oldTable.length;
    if (oldCapacity == MAXIMUM_CAPACITY) {
    threshold
    = Integer.MAX_VALUE;
    return;
    }

    Entry[] newTable
    = new Entry[newCapacity];
    transfer(newTable);
    table
    = newTable;
    threshold
    = (int)(newCapacity * loadFactor);
    }

    void transfer(Entry[] newTable) {
    Entry[] src
    = table;
    int newCapacity = newTable.length;
    for (int j = 0; j ) {
    Entry e = src[j];
    if (e != null) {
    src[j]
    = null;
    do {
    Entry
    next = e.next;
    //重新对每个元素计算index
    int i = indexFor(e.hash, newCapacity);
    e.next
    = newTable[i];
    newTable[i]
    = e;
    e
    = next;
    }
    while (e != null);
    }
    }
    }

     

  • clear()方法
    clear方法非常简单,就是遍历table然后把每个位置置为null,同时修改元素个数为0
    需要注意的是clear方法只会清楚里面的元素,并不会重置capactiy
     public void clear() {
    modCount
    ++;
    Entry[] tab
    = table;
    for (int i = 0; i )
    tab[i] = null;
    size
    = 0;
    }

     

  • containsKey和containsValue
    containsKey方法是先计算hash然后使用hash和table.length取摸得到index值,遍历table[index]元素查找是否包含key相同的值
    public boolean containsKey(Object key) {
    return getEntry(key) != null;
    }
    final Entry getEntry(Object key) {
    int hash = (key == null) ? 0 : hash(key.hashCode());
    for (Entry e = table[indexFor(hash, table.length)];
    e
    != null;
    e
    = e.next) {
    Object k;
    if (e.hash == hash &&
    ((k
    = e.key) == key || (key != null && key.equals(k))))
    return e;
    }
    return null;
    }

    containsValue方法就比较粗暴了,就是直接遍历所有元素直到找到value,由此可见HashMap的containsValue方法本质上和普通数组和list的contains方法没什么区别,你别指望它会像containsKey那么高效

    public boolean containsValue(Object value) {
    if (value == null)
    return containsNullValue();

    Entry[] tab
    = table;
    for (int i = 0; i )
    for (Entry e = tab[i] ; e != null ; e = e.next)
    if (value.equals(e.value))
    return true;
    return false;
    }

     

  • hash和indexFor
    indexFor中的h & (length-1)就相当于h%length,用于计算index也就是在table数组中的下标
    hash方法是对hashcode进行二次散列,以获得更好的散列值
    为了更好理解这里我们可以把这两个方法简化为 int index= key.hashCode()/table.length,以put中的方法为例可以这样替换
    int hash = hash(key.hashCode());//计算hash
    int i = indexFor(hash, table.length);//计算在数组中的存储位置
    //上面这两行可以这样简化
    int i = key.key.hashCode()%table.length;

     

  •   static int hash(int h) {
    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).
    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
    }


    static int indexFor(int h, int length) {
    return h & (length-1);
    }

     

HashMap的简化实现MyHashMap

为了加深理解,我个人实现了一个简化版本的HashMap,注意哦,仅仅是简化版的功能并不完善,仅供参考

package cn.lzrabbit.structure;

/**
* Created by rabbit on 14-5-4.
*/
public class MyHashMap {

//默认初始化大小 16
private static final int DEFAULT_INITIAL_CAPACITY = 16;
//默认负载因子 0.75
private static final float DEFAULT_LOAD_FACTOR = 0.75f;

//临界值
private int threshold;

//元素个数
private int size;

//扩容次数
private int resize;

private HashEntry[] table;

public MyHashMap() {
table
= new HashEntry[DEFAULT_INITIAL_CAPACITY];
threshold
= (int) (DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
size
= 0;
}

private int index(Object key) {
//根据key的hashcode和table长度取模计算key在table中的位置
return key.hashCode() % table.length;
}

public void put(Object key, Object value) {
//key为null时需要特殊处理,为简化实现忽略null值
if (key == null) return;
int index = index(key);

//遍历index位置的entry,若找到重复key则更新对应entry的值,然后返回
HashEntry entry = table[index];
while (entry != null) {
if (entry.getKey().hashCode() == key.hashCode() && (entry.getKey() == key || entry.getKey().equals(key))) {
entry.setValue(value);
return;
}
entry
= entry.getNext();
}
//若index位置没有entry或者未找到重复的key,则将新key添加到table的index位置
add(index, key, value);
}

private void add(int index, Object key, Object value) {
//将新的entry放到table的index位置第一个,若原来有值则以链表形式存放
HashEntry entry = new HashEntry(key, value, table[index]);
table[index]
= entry;
//判断size是否达到临界值,若已达到则进行扩容,将table的capacicy翻倍
if (size++ >= threshold) {
resize(table.length
* 2);
}
}

private void resize(int capacity) {
if (capacity <= table.length) return;

HashEntry[] newTable
= new HashEntry[capacity];
//遍历原table,将每个entry都重新计算hash放入newTable中
for (int i = 0; i ) {
HashEntry old = table[i];
while (old != null) {
HashEntry next
= old.getNext();
int index = index(old.getKey());
old.setNext(newTable[index]);
newTable[index]
= old;
old
= next;
}
}
//用newTable替table
table = newTable;
//修改临界值
threshold = (int) (table.length * DEFAULT_LOAD_FACTOR);
resize
++;
}

public Object get(Object key) {
//这里简化处理,忽略null值
if (key == null) return null;
HashEntry entry
= getEntry(key);
return entry == null ? null : entry.getValue();
}

public HashEntry getEntry(Object key) {
HashEntry entry
= table[index(key)];
while (entry != null) {
if (entry.getKey().hashCode() == key.hashCode() && (entry.getKey() == key || entry.getKey().equals(key))) {
return entry;
}
entry
= entry.getNext();
}
return null;
}

public void remove(Object key) {
if (key == null) return;
int index = index(key);
HashEntry pre
= null;
HashEntry entry
= table[index];
while (entry != null) {
if (entry.getKey().hashCode() == key.hashCode() && (entry.getKey() == key || entry.getKey().equals(key))) {
if (pre == null) table[index] = entry.getNext();
else pre.setNext(entry.getNext());
//如果成功找到并删除,修改size
size--;
return;
}
pre
= entry;
entry
= entry.getNext();
}
}

public boolean containsKey(Object key) {
if (key == null) return false;
return getEntry(key) != null;
}

public int size() {
return this.size;
}

public void clear() {
for (int i = 0; i ) {
table[i] = null;
}
this.size = 0;
}


@Override
public String toString() {
StringBuilder sb
= new StringBuilder();
sb.append(String.format(
"size:%s capacity:%s resize:%s\n\n", size, table.length, resize));
for (HashEntry entry : table) {
while (entry != null) {
sb.append(entry.getKey()
+ ":" + entry.getValue() + "\n");
entry
= entry.getNext();
}
}
return sb.toString();
}
}

class HashEntry {
private final Object key;
private Object value;
private HashEntry next;

public HashEntry(Object key, Object value, HashEntry next) {
this.key = key;
this.value = value;
this.next = next;
}

public Object getKey() {
return key;
}

public Object getValue() {
return value;
}

public void setValue(Object value) {
this.value = value;
}

public HashEntry getNext() {
return next;
}

public void setNext(HashEntry next) {
this.next = next;
}
}
MyHashMap

 


推荐阅读
  • 使用Maven JAR插件将单个或多个文件及其依赖项合并为一个可引用的JAR包
    本文介绍了如何利用Maven中的maven-assembly-plugin插件将单个或多个Java文件及其依赖项打包成一个可引用的JAR文件。首先,需要创建一个新的Maven项目,并将待打包的Java文件复制到该项目中。通过配置maven-assembly-plugin,可以实现将所有文件及其依赖项合并为一个独立的JAR包,方便在其他项目中引用和使用。此外,该方法还支持自定义装配描述符,以满足不同场景下的需求。 ... [详细]
  • 在对WordPress Duplicator插件0.4.4版本的安全评估中,发现其存在跨站脚本(XSS)攻击漏洞。此漏洞可能被利用进行恶意操作,建议用户及时更新至最新版本以确保系统安全。测试方法仅限于安全研究和教学目的,使用时需自行承担风险。漏洞编号:HTB23162。 ... [详细]
  • 使用 ListView 浏览安卓系统中的回收站文件 ... [详细]
  • 分享一款基于Java开发的经典贪吃蛇游戏实现
    本文介绍了一款使用Java语言开发的经典贪吃蛇游戏的实现。游戏主要由两个核心类组成:`GameFrame` 和 `GamePanel`。`GameFrame` 类负责设置游戏窗口的标题、关闭按钮以及是否允许调整窗口大小,并初始化数据模型以支持绘制操作。`GamePanel` 类则负责管理游戏中的蛇和苹果的逻辑与渲染,确保游戏的流畅运行和良好的用户体验。 ... [详细]
  • 本文介绍了如何利用ObjectMapper实现JSON与JavaBean之间的高效转换。ObjectMapper是Jackson库的核心组件,能够便捷地将Java对象序列化为JSON格式,并支持从JSON、XML以及文件等多种数据源反序列化为Java对象。此外,还探讨了在实际应用中如何优化转换性能,以提升系统整体效率。 ... [详细]
  • 在Android应用开发中,实现与MySQL数据库的连接是一项重要的技术任务。本文详细介绍了Android连接MySQL数据库的操作流程和技术要点。首先,Android平台提供了SQLiteOpenHelper类作为数据库辅助工具,用于创建或打开数据库。开发者可以通过继承并扩展该类,实现对数据库的初始化和版本管理。此外,文章还探讨了使用第三方库如Retrofit或Volley进行网络请求,以及如何通过JSON格式交换数据,确保与MySQL服务器的高效通信。 ... [详细]
  • 本指南从零开始介绍Scala编程语言的基础知识,重点讲解了Scala解释器REPL(读取-求值-打印-循环)的使用方法。REPL是Scala开发中的重要工具,能够帮助初学者快速理解和实践Scala的基本语法和特性。通过详细的示例和练习,读者将能够熟练掌握Scala的基础概念和编程技巧。 ... [详细]
  • 本文探讨了 Java 中 Pair 类的历史与现状。虽然 Java 标准库中没有内置的 Pair 类,但社区和第三方库提供了多种实现方式,如 Apache Commons 的 Pair 类和 JavaFX 的 javafx.util.Pair 类。这些实现为需要处理成对数据的开发者提供了便利。此外,文章还讨论了为何标准库未包含 Pair 类的原因,以及在现代 Java 开发中使用 Pair 类的最佳实践。 ... [详细]
  • 本文介绍了一种自定义的Android圆形进度条视图,支持在进度条上显示数字,并在圆心位置展示文字内容。通过自定义绘图和组件组合的方式实现,详细展示了自定义View的开发流程和关键技术点。示例代码和效果展示将在文章末尾提供。 ... [详细]
  • 深入剖析Java中SimpleDateFormat在多线程环境下的潜在风险与解决方案
    深入剖析Java中SimpleDateFormat在多线程环境下的潜在风险与解决方案 ... [详细]
  • ### 优化后的摘要本学习指南旨在帮助读者全面掌握 Bootstrap 前端框架的核心知识点与实战技巧。内容涵盖基础入门、核心功能和高级应用。第一章通过一个简单的“Hello World”示例,介绍 Bootstrap 的基本用法和快速上手方法。第二章深入探讨 Bootstrap 与 JSP 集成的细节,揭示两者结合的优势和应用场景。第三章则进一步讲解 Bootstrap 的高级特性,如响应式设计和组件定制,为开发者提供全方位的技术支持。 ... [详细]
  • 在处理 XML 数据时,如果需要解析 `` 标签的内容,可以采用 Pull 解析方法。Pull 解析是一种高效的 XML 解析方式,适用于流式数据处理。具体实现中,可以通过 Java 的 `XmlPullParser` 或其他类似的库来逐步读取和解析 XML 文档中的 `` 元素。这样不仅能够提高解析效率,还能减少内存占用。本文将详细介绍如何使用 Pull 解析方法来提取 `` 标签的内容,并提供一个示例代码,帮助开发者快速解决问题。 ... [详细]
  • 在Java编程中,`String`对象既可以用作对象,也可以用作基本类型。本文深入解析了`String`对象中`equals`方法与`==`运算符的区别及其应用场景。`equals`方法用于比较两个字符串的内容是否相同,而`==`运算符则用于比较两个字符串对象的引用是否相同。通过具体示例和代码片段,文章详细阐述了这两种比较方式的内在机制和适用场景,帮助开发者更好地理解和使用`String`对象的比较操作。 ... [详细]
  • Java学习第10天:深入理解Map接口及其应用 ... [详细]
  • 本文详细探讨了Java事件处理机制的核心概念与实现原理,内容浅显易懂,适合初学者逐步掌握。通过具体的示例和详细的解释,读者可以深入了解Java事件模型的工作方式及其在实际开发中的应用。 ... [详细]
author-avatar
一颗顽石
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有