热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

matlab最小二乘法拟合参数,matlab最小二乘法拟合

matlab最小二乘法拟合数学建模与数学实验拟合1实验目的实验内容2.掌握用数学软件求解拟合问题.1.直观了解拟合基本内容.1.拟合问题引例及基本原理&

41528d3028836879cd698677c3999917.gifmatlab最小二乘法拟合

数学建模与数学实验 拟 合 1 实验目的 实验内容 2. 掌握用数学软件求解拟合问题. 1. 直观了解拟合基本内容. 1. 拟合问题引例及基本原理. 4. 实验作业. 2. 用数学软件求解拟合问题. 3. 应用实例. 2 拟 合 2. 拟合的基本原理 1. 拟合问题引例 3 拟 合 问 题 引 例 1 温度t(ºC) 20.5 32.7 51.0 73.0 95.7 电阻R() 765 826 873 942 1032 已知热敏电阻数据 : 求60ºC时的电阻R. 设 R=at+b a,b为待定系数 4 拟 合 问 题 引 例 2 t (h) 0.25 0.5 1 1.5 2 3 4 6 8 c (g/ml) 19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01 已知一室模型快速静脉注射下的血药浓度数据(t=0注射300mg) 求血药浓度随时间的变化规律c(t). 作半对数坐标系(semilogy)下的图形 MATLAB(aa1) 5 曲 线 拟 合 问 题 的 提 法 已知一组(二维)数据,即平面上 n个点(xi,yi) i=1,…,n, 寻求一个函数(曲线)y=f(x), 使 f(x) 在某种准则下与所有 数据点最为接近,即曲线拟合得最好. + + + + + + + + + x y y=f(x) (xi,yi) i i 为点(xi,yi) 与曲线 y=f(x) 的距离 6 拟合与插值的关系 函数插值与曲线拟合都是要根据一组数据构造一个函数作 为近似,由于近似的要求不同,二者在数学方法上是完全不同 的. 实例:下面数据是某次实验所得,希望得到X和 f之间的关系? MATLAB(cn) 问题:给定一批数据点,需确定满足特定要求的曲线或曲面 解决方案: •若不要求曲线(面)通过所有数据点,而是要求它反映对象 整体的变化趋势,这就是数据拟合,又称曲线拟合或曲面拟合 . •若要求所求曲线(面)通过所给所有数据点,就是插值问题; 7 最临近插值、线性插值、样条插值与曲线拟合结果: 8 曲线拟合问题最常用的解法——线性最小二乘法的基本思路 第一步:先选定一组函数 r1(x), r2(x), …,rm(x), m0) 模型假设 1.机体看作一个房室,室内血药浓度均匀——一室模型 模型建立 在此,d=300mg,t及c(t)在某些点处的值见前表, 需经拟合求出参数k、v. 32 用线性最小二乘拟合c(t) MATLAB(lihe1) 计算结果: d=300; t=[0.25 0.5 1 1.5 2 3 4 6 8]; c=[19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01]; y=log(c); a=polyfit(t,y,1) k=-a(1) v=d/exp(a(2)) 程序: 用非线性最小 二乘拟合c(t) 33 给药方案 设计 c c2 c1 Ot • 设每次注射剂量D, 间隔时间 • 血药浓度c(t) 应c1 c(t)  c2 • 初次剂量D0 应加大 给药方案记为: 2. 1. 计算结果: 给药方案: c1=10,c2=25 k=0.2347 v=15.02 34 故可制定给药方案: 即: 首次注射375mg, 其余每次注射225mg, 注射的间隔时间为4h. 35 估计水塔的流量 2. 解题思路 3. 算法设计与编程 1. 问题 36 某居民区有一供居民用水的圆柱形水塔,一 般可以通过测量其水位来估计水的流量,但面临 的困难是,当水塔水位下降到设定的最低水位时 ,水泵自动启动向水塔供水,到设定的最高水位 时停止供水,这段时间无法测量水塔的水位和水 泵的供水量.通常水泵每天供水一两次,每次约 两小时. 水塔是一个高12.2m,直径17.4m的正圆柱.按照 设计,水塔水位降至约8.2m时,水泵自动启动, 水位升到约10.8m时水泵停止工作. 表1 是某一天的水位测量记录,试估计任何时刻 (包括水泵正供水时)从水塔流出的水流量,及 一天的总用水量. 37 38 流量估计的解题思路 拟合水位~时间函数 确定流量~时间函数 估计一天总用水量 39 拟合水位~时间函数 从测量记录看,一天有两个供水时段(以下称第1供 水时段和第2供水时段),和3个水泵不工作时段(以 下称第1时段t=0到t=8.97,第2次时段t=10.95到t=20.84 和第3时段t=23以后).对第1、2时段的测量数据直接 分别作多项式拟合,得到水位函数.为使拟合曲线比 较光滑,多项式次数不要太高,一般在3~6.由于第3 时段只有3个测量记录,无法对这一时段的水位作出较 好的拟合. 40 确定流量~时间函数 对于第1、2时段只需将水位函数求导数即可, 对于两个供水时段的流量,则用供水时段前后( 水泵不工作时段)的流量拟合得到,并且将拟合 得到的第2供水时段流量外推,将第3时段流量包 含在第2供水时段内. 41 一天总用水量的估计 总用水量等于两个水泵不工作时段和 两个供水时段用水量之和,它们都可以 由流量对时间的积分得到. 42 算法设计与编程 1. 拟合第1、2时段的水位,并导出流量 2. 拟合供水时段的流量 3. 估计一天总用水量 4. 流量及总用水量的检验 43 1. 拟合第1时段的水位,并导出流量 设t,h为已输入的时刻和水位测量记录(水泵启动的4个时刻 不输入),第1时段各时刻的流量可如下得: 1) c1=polyfit(t(1:10),h(1:10),3); %用3次多项式拟合第1时段水位,c1输出3次多项式的系数 2)a1=polyder(c1); % a1输出多项式(系数为c1)导数的系数 3)tp1=0:0.1:9; x1=-polyval(a1,tp1);% x1输出多项式(系数a1) 在tp1点的函数值(取负后边为正值),即tp1时刻的流量 MATLAB(llgj1) 4)流量函数为: 44 拟合第2时段的水位,并导出流量 设t,h为已输入的时刻和水位测量记录(水泵启动的4个时刻 不输入),第2时段各时刻的流量可如下得: 1) c2=polyfit(t(10.9:21),h(10.9:21),3); %用3次多项式拟合第2时段水位,c2输出3次多项式的系数 2) a2=polyder(c2); % a2输出多项式(系数为c2)导数的系数 3)tp2=10.9:0.1:21; x2=-polyval(a2,tp2); % x2输出多项式(系数为a2) 在tp2点的函数值(取负后边为正值),即tp2时刻的流量 MATLAB(llgj2) 4)流量函数为: 45 2. 拟合供水时段的流量 在第1供水时段(t=9~11)之前(即第1时段)和之后(即第2时 段)各取几点,其流量已经得到,用它们拟合第1供水时段的流量 .为使流量函数在t=9和t=11连续,我们简单地只取4个点,拟合3次 多项式(即曲线必过这4个点),实现如下: xx1=-polyval(a1,[8 9]);%取第1时段在t=8,9的流量 xx2=-pol



推荐阅读
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • Søren Kierkegaard famously stated that life can only be understood in retrospect but must be lived moving forward. This perspective delves into the intricate relationship between our lived experiences and our reflections on them. ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文详细介绍 Go+ 编程语言中的上下文处理机制,涵盖其基本概念、关键方法及应用场景。Go+ 是一门结合了 Go 的高效工程开发特性和 Python 数据科学功能的编程语言。 ... [详细]
  • PyCharm中配置Pylint静态代码分析工具
    本文详细介绍如何在PyCharm中配置和使用Pylint,帮助开发者进行静态代码检查,确保代码符合PEP8规范,提高代码质量。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 优化ASM字节码操作:简化类转换与移除冗余指令
    本文探讨如何利用ASM框架进行字节码操作,以优化现有类的转换过程,简化复杂的转换逻辑,并移除不必要的加0操作。通过这些技术手段,可以显著提升代码性能和可维护性。 ... [详细]
  • 本文总结了2018年的关键成就,包括职业变动、购车、考取驾照等重要事件,并分享了读书、工作、家庭和朋友方面的感悟。同时,展望2019年,制定了健康、软实力提升和技术学习的具体目标。 ... [详细]
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • python的交互模式怎么输出名文汉字[python常见问题]
    在命令行模式下敲命令python,就看到类似如下的一堆文本输出,然后就进入到Python交互模式,它的提示符是>>>,此时我们可以使用print() ... [详细]
  • 本文详细介绍了如何使用PHP检测AJAX请求,通过分析预定义服务器变量来判断请求是否来自XMLHttpRequest。此方法简单实用,适用于各种Web开发场景。 ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
author-avatar
qwer
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有