本文主要介绍关于FFT,采样定理,采样率的知识点,对【FFT原理详解】和【fft降噪原理】有兴趣的朋友可以看下由【Cawen_Cao】投稿的技术文章,希望该技术和经验能帮到你解决你所遇的【嵌入式开发【硬件】】相关技术问题。
FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到
频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱
分析方面也是经常用的。
来做FFT。虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点
我们,采样频率要大于信号频率的两倍, 这些我就不在此罗嗦了。现在就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉
采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运
算,通常N取2的整数次方。假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就
对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,
那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量
的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实
际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,
这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。
由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。
1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信
号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒
数关系。
假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就
可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。对于n=1点
的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。
好了,说了半天,看着公式也晕,下面以一个实际的信号来做说明。
位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相
式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们
上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:
0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?
我们来看看FFT的结果的模值如图所示。
图1 FFT结果
从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看:
1点: 512+0i2点: -2.6195E-14 - 1.4162E-13i?3点: -2.8586E-14 - 1.1898E-13i50点:-6.2076E-13 -2.1713E-12i51点:332.55 - 192i52点:-1.6707E-12 - 1.5241E-12i75点:-2.2199E-13 -1.0076E-12i76点:3.4315E-12 + 192i77点:-3.0263E-14 +7.5609E-13i
??
很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,我们来计算各点的幅度值。分别计算这三个点的模值,结果如下:
1点: 512
51点:384
76点:192按照公式,可以计算出直流分量为:512/N=512/256=2;
50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;
75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。
可见,从频谱分析出来的幅度是正确的。
?然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192,332.55)=-0.5236,结果是弧
度,换算为角度就是180*(-0.5236)/pi=-30.0001。再计算75Hz信号的相位,atan2(192,3.4315E-12)=1.5708弧度,换算成角度就是
180*1.5708/pi=90.0002。可见,相位也是对的。
根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。
总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以
N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数
atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。
要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方
法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,
这在一定程度上能够提高频率分辨力。具体的频率细分法可参考相关文献。
[附录:本测试数据使用的matlab程序]
close all; %先关闭所有图片
Adc=2;? %直流分量幅度
A1=3;?? %频率F1信号的幅度
A2=1.5; %频率F2信号的幅度
F1=50;? %信号1频率(Hz)
F2=75;? %信号2频率(Hz)
Fs=256; %采样频率(Hz)
P1=-30; %信号1相位(度)
P2=90;? %信号相位(度)
N=256;? %采样点数
t=[0:1/Fs:N/Fs]; %采样时刻%信号
S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);
%显示原始信号
plot(S);
title('原始信号');figure;
Y = fft(S,N); %做FFT变换
Ayy = (abs(Y)); %取模
plot(Ayy(1:N)); %显示原始的FFT模值结果
title('FFT 模值');figure;
Ayy=Ayy/(N/2);?? %换算成实际的幅度
Ayy(1)=Ayy(1)/2;
F=([1:N]-1)*Fs/N; %换算成实际的频率值
plot(F(1:N/2),Ayy(1:N/2));?? %显示换算后的FFT模值结果
title('幅度-频率曲线图');figure;
Pyy=[1:N/2];
for i="1:N/2"
?Pyy(i)=phase(Y(i)); %计算相位
?Pyy(i)=Pyy(i)*180/pi; %换算为角度
end;
plot(F(1:N/2),Pyy(1:N/2));?? %显示相位图
title('相位-频率曲线图');对声音信号进行加密,将声音文件在时间轴上分割成几段,分别将段的秩序及某些段内的秩序颠倒,从而实现了对声音文件的加
密。首先,先读取一个声音信号,对信号做1024点FFT变换,取完点之后,分成四个向量,四个向量组成一个矩阵,再对每一个向
量进行转置,再重新整合,从而就实现了回密的过程。
本文《FFT原理详解》版权归Cawen_Cao所有,引用FFT原理详解需遵循CC 4.0 BY-SA版权协议。