热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

l2范数求导_理解L1,L2范数在机器学习中应用

理解L1,L2范数L1,L2范数即L1-norm和L2-norm,自然,有L1、L2便也有L0、L3等等。因为在机器学习领域

理解L1,L2 范数

L1,L2 范数即 L1-norm 和 L2-norm,自然,有L1、L2便也有L0、L3等等。因为在机器学习领域,L1 和 L2 范数应用比较多,比如作为正则项在回归中的使用 Lasso Regression(L1) 和 Ridge Regression(L2)。

因此,此两者的辨析也总被提及,或是考到。不过在说明两者定义和区别前,先来谈谈什么是范数(Norm)吧。

什么是范数?

在线性代数以及一些数学领域中,norm 的定义是

a function that assigns a strictly positive length or size to each vector in a vector space, except for the zero vector. ——Wikipedia

简单点说,一个向量的 norm 就是将该向量投影到 [0, ​) 范围内的值,其中 0 值只有零向量的 norm 取到。看到这样的一个范围,相信大家就能想到其与现实中距离的类比,于是在机器学习中 norm 也就总被拿来表示距离关系:根据怎样怎样的范数,这两个向量有多远。

上面这个怎样怎样也就是范数种类,通常我们称​为p-norm,严格定义是:

其中当 p 取 1 时被称为 1-norm,也就是提到的 L1-norm,同理 L2-norm 可得。

L1 和 L2 范数的定义

根据上述公式 L1-norm 和 L2-norm 的定义也就自然而然得到了。

先将 p=1 代入公式,就有了 L1-norm 的定义:

然后代入 p=2,L2-norm 也有了:

L2 展开就是熟悉的欧几里得范数:

题外话,其中 L1-norm 又叫做 taxicab-norm 或者 Manhattan-norm,可能最早提出的大神直接用在曼哈顿区坐出租车来做比喻吧。下图中绿线是两个黑点的 L2 距离,而其他几根就是 taxicab 也就是 L1 距离,确实很像我们平时用地图时走的路线了。

L1 和 L2 范数在机器学习上最主要的应用大概分下面两类

作为损失函数使用

作为正则项使用也即所谓 L1-regularization 和 L2-regularization

我们可以担当损失函数

先来看个回归问题

我们需要做的是,获得一条线,让数据点到线上的总距离(也就是error)最小。

还记得之前在范数介绍中提到的用来表示距离吗,于是也可以用能表示距离的 L1-norm 和 L2-norm 来作为损失函数了。

首先是 L1-norm 损失函数,又被称为 least absolute deviation (LAD,最小绝对偏差)

如果我们最小化上面的损失函数,其实就是在最小化预测值 ​ 和目标值 ​ 的绝对值。

之后是大家最熟悉的 L2-norm 损失函数,又有大名最小二乘误差 (least squares error, LSE):

这个便不多解释了。

那么问题来了,这里不谈挖掘机,为什么大家一般都用 L2 损失函数,却不用 L1 呢?

这个就说来话长了,如果你问一个学习过微积分的同学,如何求一个方程的最小值,他/她大概会想当然的说:“求导,置零,解方程。” 号称微积分届的农夫三拳。

但如果给出一个绝对值的方程,突然就会发现农夫三拳不管用了,求最小值就有点麻烦了。主要是因为绝对值的倒数是不连续的。

同样的对于 L1 和 L2 损失函数的选择,也会碰到同样的问题,所以最后大家一般用 L2 损失函数而不用 L1 损失函数的原因就是:

因为计算方便!

可以直接求导获得取最小值时各个参数的取值。

此外还有一点,用 L2 一定只有一条最好的预测线,L1 则因为其性质可能存在多个最优解。(更多关于L1 L2 损失函数参考索引5)

当然 L1 损失函数难道就没有什么好处了吗,也是有的,那就是鲁棒性 (Robust) 更强,对异常值更不敏感。

我们还能担当正则项

因为机器学习中众所周知的过拟合问题,所以用正则化防止过拟合,成了机器学习中一个非常重要的技巧。

但数学上来讲,其实就是在损失函数中加个正则项(Regularization Term),来防止参数拟合得过好。

L1-regularization 和 L2-regularization 便都是我们常用的正则项,两者公式的例子分别如下

这两个正则项最主要的不同,包括两点:

如上面提到的,L2 计算起来更方便,而 L1 在特别是非稀疏向量上的计算效率就很低;

还有就是 L1 最重要的一个特点,输出稀疏,会把不重要的特征直接置零,而 L2 则不会;

最后,如之前多次提过,L2 有唯一解,而 L1 不是。

这里关于第二条输出稀疏我想再进行一些详细讲解,因为 L1 天然的输出稀疏性,把不重要的特征都置为 0,所以它也是一个天然的特征选择器。

可是为什么 L1 会有这样的性质呢,而 L2 没有呢?这里用个直观的例子来讲解。

来一步一步看吧,首先获知用梯度下降法来优化时,需要求导获得梯度,然后用以更新参数。

于是分别先对 L1 正则项和 L2 正则项来进行求导,可得。

之后将 L1 和 L2 和它们的导数画在图上

于是会发现,在梯度更新时,不管 L1 的大小是多少(只要不是0)梯度都是1或者-1,所以每次更新时,它都是稳步向0前进。

而看 L2 的话,就会发现它的梯度会越靠近0,就变得越小。

也就是说加了 L1 正则的话基本上经过一定步数后很可能变为0,而 L2 几乎不可能,因为在值小的时候其梯度也会变小。于是也就造成了 L1 输出稀疏的特性。

Reference



推荐阅读
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 数据管理权威指南:《DAMA-DMBOK2 数据管理知识体系》
    本书提供了全面的数据管理职能、术语和最佳实践方法的标准行业解释,构建了数据管理的总体框架,为数据管理的发展奠定了坚实的理论基础。适合各类数据管理专业人士和相关领域的从业人员。 ... [详细]
  • 前言--页数多了以后需要指定到某一页(只做了功能,样式没有细调)html ... [详细]
  • 本文将介绍由密歇根大学Charles Severance教授主讲的顶级Python入门系列课程,该课程广受好评,被誉为Python学习的最佳选择。通过生动有趣的教学方式,帮助初学者轻松掌握编程基础。 ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 在 Swift 编程中,遇到错误提示“一元运算符 '!' 不能应用于 '()' 类型的操作数”,通常是因为尝试对没有返回值的方法或函数应用逻辑非运算符。本文将详细解释该错误的原因,并提供解决方案。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 本文介绍了在Windows环境下使用pydoc工具的方法,并详细解释了如何通过命令行和浏览器查看Python内置函数的文档。此外,还提供了关于raw_input和open函数的具体用法和功能说明。 ... [详细]
  • 本文讨论了如何根据特定条件动态显示或隐藏文件上传控件中的默认文本(如“未选择文件”)。通过结合CSS和JavaScript,可以实现更灵活的用户界面。 ... [详细]
  • 深入解析Nginx中的Location指令及其属性
    本文将详细探讨Nginx配置文件中关键的location指令,包括其三种匹配方式(精准匹配、普通匹配和正则匹配),以及如何在实际应用中灵活运用这些匹配规则。此外,还将介绍location下的重要子元素如root、alias和proxy_pass,并解释相关参数的使用方法。 ... [详细]
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • PHP 过滤器详解
    本文深入探讨了 PHP 中的过滤器机制,包括常见的 $_SERVER 变量、filter_has_var() 函数、filter_id() 函数、filter_input() 函数及其数组形式、filter_list() 函数以及 filter_var() 和其数组形式。同时,详细介绍了各种过滤器的用途和用法。 ... [详细]
  • 在网站制作中随时可用的10个 HTML5 代码片段
    HTML很容易写,但创建网页时,您经常需要重复做同样的任务,如创建表单。在这篇文章中,我收集了10个超有用的HTML代码片段,有HTML5启动模板、空白图片、打电话和发短信、自动完 ... [详细]
  • 实用正则表达式有哪些
    小编给大家分享一下实用正则表达式有哪些,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下 ... [详细]
author-avatar
温柔842_259
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有