热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

kerasK.function获取某层的输出操作

这篇文章主要介绍了kerasK.function获取某层的输出操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

如下所示:

from keras import backend as K
from keras.models import load_model

models = load_model('models.hdf5')
image=r'image.png'
images=cv2.imread(r'image.png')
image_arr = process_image(image, (224, 224, 3))
image_arr = np.expand_dims(image_arr, axis=0)
layer_1 = K.function([base_model.get_input_at(0)], [base_model.get_layer('layer_name').output])
f1 = layer_1([image_arr])[0]

加载训练好并保存的网络模型

加载数据(图像),并将数据处理成array形式

指定输出层

将处理后的数据输入,然后获取输出

其中,K.function有两种不同的写法:

1. 获取名为layer_name的层的输出

layer_1 = K.function([base_model.get_input_at(0)], [base_model.get_layer('layer_name').output]) #指定输出层的名称

2. 获取第n层的输出

layer_1 = K.function([model.get_input_at(0)], [model.layers[5].output]) #指定输出层的序号(层号从0开始)

另外,需要注意的是,书写不规范会导致报错:

报错:

TypeError: inputs to a TensorFlow backend function should be a list or tuple

将该句:

f1 = layer_1(image_arr)[0]

修改为:

f1 = layer_1([image_arr])[0]

补充知识:keras.backend.function()

如下所示:

def function(inputs, outputs, updates=None, **kwargs):
 """Instantiates a Keras function.
 Arguments:
   inputs: List of placeholder tensors.
   outputs: List of output tensors.
   updates: List of update ops.
   **kwargs: Passed to `tf.Session.run`.
 Returns:
   Output values as Numpy arrays.
 Raises:
   ValueError: if invalid kwargs are passed in.
 """
 if kwargs:
  for key in kwargs:
   if (key not in tf_inspect.getargspec(session_module.Session.run)[0] and
     key not in tf_inspect.getargspec(Function.__init__)[0]):
    msg = ('Invalid argument "%s" passed to K.function with Tensorflow '
        'backend') % key
    raise ValueError(msg)
 return Function(inputs, outputs, updates=updates, **kwargs)

这是keras.backend.function()的源码。其中函数定义开头的注释就是官方文档对该函数的解释。

我们可以发现function()函数返回的是一个Function对象。下面是Function类的定义。

class Function(object):
 """Runs a computation graph.
 Arguments:
   inputs: Feed placeholders to the computation graph.
   outputs: Output tensors to fetch.
   updates: Additional update ops to be run at function call.
   name: a name to help users identify what this function does.
 """

 def __init__(self, inputs, outputs, updates=None, name=None,
        **session_kwargs):
  updates = updates or []
  if not isinstance(inputs, (list, tuple)):
   raise TypeError('`inputs` to a TensorFlow backend function '
           'should be a list or tuple.')
  if not isinstance(outputs, (list, tuple)):
   raise TypeError('`outputs` of a TensorFlow backend function '
           'should be a list or tuple.')
  if not isinstance(updates, (list, tuple)):
   raise TypeError('`updates` in a TensorFlow backend function '
           'should be a list or tuple.')
  self.inputs = list(inputs)
  self.outputs = list(outputs)
  with ops.control_dependencies(self.outputs):
   updates_ops = []
   for update in updates:
    if isinstance(update, tuple):
     p, new_p = update
     updates_ops.append(state_ops.assign(p, new_p))
    else:
     # assumed already an op
     updates_ops.append(update)
   self.updates_op = control_flow_ops.group(*updates_ops)
  self.name = name
  self.session_kwargs = session_kwargs

 def __call__(self, inputs):
  if not isinstance(inputs, (list, tuple)):
   raise TypeError('`inputs` should be a list or tuple.')
  feed_dict = {}
  for tensor, value in zip(self.inputs, inputs):
   if is_sparse(tensor):
    sparse_coo = value.tocoo()
    indices = np.concatenate((np.expand_dims(sparse_coo.row, 1),
                 np.expand_dims(sparse_coo.col, 1)), 1)
    value = (indices, sparse_coo.data, sparse_coo.shape)
   feed_dict[tensor] = value
  session = get_session()
  updated = session.run(
    self.outputs + [self.updates_op],
    feed_dict=feed_dict,
    **self.session_kwargs)
  return updated[:len(self.outputs)]

所以,function函数利用我们之前已经创建好的comuptation graph。遵循计算图,从输入到定义的输出。这也是为什么该函数经常用于提取中间层结果。

以上这篇keras K.function获取某层的输出操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


推荐阅读
  • 本教程详细介绍了如何使用 TensorFlow 2.0 构建和训练多层感知机(MLP)网络,涵盖回归和分类任务。通过具体示例和代码实现,帮助初学者快速掌握 TensorFlow 的核心概念和操作。 ... [详细]
  • 解决TensorFlow CPU版本安装中的依赖问题
    本文记录了在安装CPU版本的TensorFlow过程中遇到的依赖问题及解决方案,特别是numpy版本不匹配和动态链接库(DLL)错误。通过详细的步骤说明和专业建议,帮助读者顺利安装并使用TensorFlow。 ... [详细]
  • 本文详细介绍了使用NumPy和TensorFlow实现的逻辑回归算法。通过具体代码示例,解释了数据加载、模型训练及分类预测的过程。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 本文详细介绍如何通过Anaconda 3.5.01快速安装TensorFlow,包括环境配置和具体步骤。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 本文详细介绍了非极大值抑制(Non-Maximum Suppression, NMS)算法的原理及其在目标检测中的应用,并提供了C++语言的具体实现代码。NMS算法通过筛选出高得分的检测框并移除重叠度高的其他检测框,有效提高了检测结果的准确性和可靠性。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • 本文介绍了一个使用Keras框架构建的卷积神经网络(CNN)实例,主要利用了Keras提供的MNIST数据集以及相关的层,如Dense、Dropout、Activation等,构建了一个具有两层卷积和两层全连接层的CNN模型。 ... [详细]
  • TensorFlow 2.0 中的 Keras 数据归一化实践
    数据预处理是机器学习任务中的关键步骤,特别是在深度学习领域。通过将数据归一化至特定范围,可以在梯度下降过程中实现更快的收敛速度和更高的模型性能。本文探讨了如何使用 TensorFlow 2.0 和 Keras 进行有效的数据归一化。 ... [详细]
  • 本文详细介绍了C++标准模板库(STL)中各容器的功能特性,并深入探讨了不同容器操作函数的异常安全性。 ... [详细]
  • TensorFlow核心函数解析与应用
    本文详细介绍了TensorFlow中几个常用的基础函数及其应用场景,包括常量创建、张量扩展以及二维卷积操作等,旨在帮助开发者更好地理解和使用这些功能。 ... [详细]
  • 本文探讨了如何在Python中处理长数据的完全显示问题,包括numpy数组、pandas DataFrame以及tensor类型的完整输出设置。 ... [详细]
  • 吴裕雄探讨混合神经网络模型在深度学习中的应用:结合RNN与CNN优化网络性能
    本文由吴裕雄撰写,深入探讨了如何利用Python、Keras及TensorFlow构建混合神经网络模型,特别是通过结合递归神经网络(RNN)和卷积神经网络(CNN),实现对网络运行效率的有效提升。 ... [详细]
author-avatar
淡然的可欣
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有