热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

java中常见的6种线程池示例详解

这篇文章主要介绍了java中常见的6种线程池示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

  • 之前我们介绍了线程池的四种拒绝策略,了解了线程池参数的含义,那么今天我们来聊聊Java 中常见的几种线程池,以及在jdk7 加入的 ForkJoin 新型线程池
  • 首先我们列出Java 中的六种线程池如下


线程池名称 描述
FixedThreadPool 核心线程数与最大线程数相同
SingleThreadExecutor 一个线程的线程池
CachedThreadPool 核心线程为0,最大线程数为Integer. MAX_VALUE
ScheduledThreadPool 指定核心线程数的定时线程池
SingleThreadScheduledExecutor 单例的定时线程池
ForkJoinPool JDK 7 新加入的一种线程池

在了解集中线程池时我们先来熟悉一下主要几个类的关系, ThreadPoolExecutor 的类图,以及 Executors 的主要方法:

上面看到的类图,方便帮助下面的理解和查看,我们可以看到一个核心类 ExecutorService , 这是我们线程池都实现的基类,我们接下来说的都是它的实现类。

FixedThreadPool

FixedThreadPool 线程池的特点是它的核心线程数和最大线程数一样,我们可以看它的实现代码在 Executors#newFixedThreadPool(int) 中,如下:

 public static ExecutorService newFixedThreadPool(int nThreads) {
 return new ThreadPoolExecutor(nThreads, nThreads,
  0L, TimeUnit.MILLISECONDS,
  new LinkedBlockingQueue());
 }

我们可以看到方法内创建线程调用的实际是 ThreadPoolExecutor 类,这是线程池的核心执行器,传入的 nThread 参数作为核心线程数和最大线程数传入,队列采用了一个链表结构的有界队列。

  • 这种线程池我们可以看作是固定线程数的线程池,它只有在开始初始化的时候线程数会从0开始创建,但是创建好后就不再销毁,而是全部作为常驻线程池,这里如果对线程池参数不理解的可以看之前文章 《解释线程池各个参数的含义》。
  • 对于这种线程池他的第三个和第四个参数是没意义,它们是空闲线程存活时间,这里都是常驻不存在销毁,当线程处理不了时会加入到阻塞队列,这是一个链表结构的有界阻塞队列,最大长度是Integer. MAX_VALUE

SingleThreadExecutor

SingleThreadExecutor 线程的特点是它的核心线程数和最大线程数均为1,我们也可以将其任务是一个单例线程池,它的实现代码是 Executors#newSingleThreadExcutor() , 如下:

 public static ExecutorService newSingleThreadExecutor() {
 return new FinalizableDelegatedExecutorService
 (new ThreadPoolExecutor(1, 1,
   0L, TimeUnit.MILLISECONDS,
   new LinkedBlockingQueue()));
 }

 public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
 return new FinalizableDelegatedExecutorService
 (new ThreadPoolExecutor(1, 1,
   0L, TimeUnit.MILLISECONDS,
   new LinkedBlockingQueue(),
   threadFactory));
 }
  • 上述代码中我们发现它有一个重载函数,传入了一个ThreadFactory 的参数,一般在我们开发中会传入我们自定义的线程创建工厂,如果不传入则会调用默认的线程工厂
  • 我们可以看到它与 FixedThreadPool 线程池的区别仅仅是核心线程数和最大线程数改为了1,也就是说不管任务多少,它只会有唯一的一个线程去执行
  • 如果在执行过程中发生异常等导致线程销毁,线程池也会重新创建一个线程来执行后续的任务
  • 这种线程池非常适合所有任务都需要按被提交的顺序来执行的场景,是个单线程的串行。

CachedThreadPool

cachedThreadPool 线程池的特点是它的常驻核心线程数为0,正如其名字一样,它所有的县城都是临时的创建,关于它的实现在 Executors#newCachedThreadPool() 中,代码如下:

 public static ExecutorService newCachedThreadPool() {
 return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
   60L, TimeUnit.SECONDS,
   new SynchronousQueue());
 }

 public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
 return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
   60L, TimeUnit.SECONDS,
   new SynchronousQueue(),
   threadFactory);
 }
  • 从上述代码中我们可以看到 CachedThreadPool 线程池中,最大线程数为 Integer.MAX_VALUE , 意味着他的线程数几乎可以无限增加。
  • 因为创建的线程都是临时线程,所以他们都会被销毁,这里空闲 线程销毁时间是60秒,也就是说当线程在60秒内没有任务执行则销毁
  • 这里我们需要注意点,它使用了 SynchronousQueue 的一个阻塞队列来存储任务,这个队列是无法存储的,因为他的容量为0,它只负责对任务的传递和中转,效率会更高,因为核心线程都为0,这个队列如果存储任务不存在意义。

ScheduledThreadPool

ScheduledThreadPool 线程池是支持定时或者周期性执行任务,他的创建代码 Executors.newSchedsuledThreadPool(int) 中,如下所示:

 public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
 return new ScheduledThreadPoolExecutor(corePoolSize);
 }

 public static ScheduledExecutorService newScheduledThreadPool(
 int corePoolSize, ThreadFactory threadFactory) {
 return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
 }

我们发现这里调用了 ScheduledThreadPoolExecutor 这个类的构造函数,进一步查看发现 ScheduledThreadPoolExecutor 类是一个继承了 ThreadPoolExecutor 的,同时实现了 ScheduledExecutorService 接口,我们看到它的几个构造函数都是调用父类 ThreadPoolExecutor 的构造函数

 public ScheduledThreadPoolExecutor(int corePoolSize) {
 super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
 new DelayedWorkQueue());
 }

 public ScheduledThreadPoolExecutor(int corePoolSize,
   ThreadFactory threadFactory) {
 super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
 new DelayedWorkQueue(), threadFactory);
 }

 public ScheduledThreadPoolExecutor(int corePoolSize,
   RejectedExecutionHandler handler) {
 super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
 new DelayedWorkQueue(), handler);
 }

 public ScheduledThreadPoolExecutor(int corePoolSize,
   ThreadFactory threadFactory,
   RejectedExecutionHandler handler) {
 super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
 new DelayedWorkQueue(), threadFactory, handler);
 }

从上面代码我们可以看到和其他线程池创建并没有差异,只是这里的任务队列是 DelayedWorkQueue 关于阻塞丢列我们下篇文章专门说,这里我们先创建一个周期性的线程池来看一下

 public static void main(String[] args) {
 ScheduledExecutorService service = Executors.newScheduledThreadPool(5);
 // 1. 延迟一定时间执行一次
 service.schedule(() ->{
 System.out.println("schedule ==> 云栖简码-i-code.online");
 },2, TimeUnit.SECONDS);

 // 2. 按照固定频率周期执行
 service.scheduleAtFixedRate(() ->{
 System.out.println("scheduleAtFixedRate ==> 云栖简码-i-code.online");
 },2,3,TimeUnit.SECONDS);

 //3. 按照固定频率周期执行
 service.scheduleWithFixedDelay(() -> {
 System.out.println("scheduleWithFixedDelay ==> 云栖简码-i-code.online");
 },2,5,TimeUnit.SECONDS);

 }

上面代码是我们简单创建了 newScheduledThreadPool ,同时演示了里面的三个核心方法,首先看执行的结果:

首先我们看第一个方法 schedule , 它有三个参数,第一个参数是线程任务,第二个 delay 表示任务执行延迟时长,第三个 unit 表示延迟时间的单位,如上面代码所示就是延迟两秒后执行任务

 public ScheduledFuture<&#63;> schedule(Runnable command,
   long delay, TimeUnit unit);

第二个方法是 scheduleAtFixedRate 如下, 它有四个参数, command 参数表示执行的线程任务 , initialDelay 参数表示第一次执行的延迟时间, period 参数表示第一次执行之后按照多久一次的频率来执行,最后一个参数是时间单位。如上面案例代码所示,表示两秒后执行第一次,之后按每隔三秒执行一次

 public ScheduledFuture<&#63;> scheduleAtFixedRate(Runnable command,
    long initialDelay,
    long period,
    TimeUnit unit);

第三个方法是 scheduleWithFixedDelay 如下,它与上面方法是非常类似的,也是周期性定时执行, 参数含义和上面方法一致。这个方法和 scheduleAtFixedRate 的区别主要在于时间的起点计时不同

 public ScheduledFuture<&#63;> scheduleWithFixedDelay(Runnable command,
    long initialDelay,
    long delay,
    TimeUnit unit);

scheduleAtFixedRate 是以任务开始的时间为时间起点来计时,时间到就执行第二次任务,与任务执行所花费的时间无关;而 scheduleWithFixedDelay 是以任务执行结束的时间点作为计时的开始。如下所示

SingleThreadScheduledExecutor 它实际和 ScheduledThreadPool 线程池非常相似,它只是 ScheduledThreadPool 的一个特例,内部只有一个线程,它只是将 ScheduledThreadPool 的核心线程数设置为了 1。如源码所示:

 public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
 return new DelegatedScheduledExecutorService
 (new ScheduledThreadPoolExecutor(1));
 }

上面我们介绍了五种常见的线程池,对于这些线程池我们可以从核心线程数、最大线程数、存活时间三个维度进行一个简单的对比,有利于我们加深对这几种线程池的记忆。 

FixedThreadPool SingleThreadExecutor CachedThreadPool ScheduledThreadPool SingleThreadScheduledExecutor
corePoolSize 构造函数传入 1 0 构造函数传入 1
maxPoolSize 同corePoolSize 1 Integer. MAX_VALUE Integer. MAX_VALUE Integer. MAX_VALUE
keepAliveTime 0 0 60 0 0

ForkJoinPool ForkJoinPool 这是一个在 JDK7 引入的新新线程池,它的主要特点是可以充分利用多核 CPU , 可以把一个任务拆分为多个子任务,这些子任务放在不同的处理器上并行执行,当这些子任务执行结束后再把这些结果合并起来,这是一种分治思想。 ForkJoinPool 也正如它的名字一样,第一步进行 Fork 拆分,第二步进行 Join 合并,我们先来看一下它的类图结构

ForkJoinPool 的使用也是通过调用 submit(ForkJoinTask task) 或 invoke(ForkJoinTask task) 方法来执行指定任务了。其中任务的类型是 ForkJoinTask 类,它代表的是一个可以合并的子任务,他本身是一个抽象类,同时还有两个常用的抽象子类 RecursiveAction 和 RecursiveTask ,其中 RecursiveTask 表示的是有返回值类型的任务,而 RecursiveAction 则表示无返回值的任务。下面是它们的类图:

下面我们通过一个简单的代码先来看一下如何使用 ForkJoinPool 线程池

/**
 * @url: i-code.online
 * @author: AnonyStar
 * @time: 2020/11/2 10:01
 */
public class ForkJoinApp1 {

 /**
 目标: 打印0-200以内的数字,进行分段每个间隔为10以上,测试forkjoin
 */
 public static void main(String[] args) {
 // 创建线程池,
 ForkJoinPool joinPool = new ForkJoinPool();
 // 创建根任务
 SubTask subTask = new SubTask(0,200);
 // 提交任务
 joinPool.submit(subTask);
 //让线程阻塞等待所有任务完成 在进行关闭
 try {
 joinPool.awaitTermination(2, TimeUnit.SECONDS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 joinPool.shutdown();
 }
}

class SubTask extends RecursiveAction {

 int startNum;
 int endNum;

 public SubTask(int startNum,int endNum){
 super();
 this.startNum = startNum;
 this.endNum = endNum;
 }

 @Override
 protected void compute() {

 if (endNum - startNum <10){
 // 如果分裂的两者差值小于10 则不再继续,直接打印
 System.out.println(Thread.currentThread().getName()+": [startNum:"+startNum+",endNum:"+endNum+"]");
 }else {
 // 取中间值
 int middle = (startNum + endNum) / 2;
 //创建两个子任务,以递归思想,
 SubTask subTask = new SubTask(startNum,middle);
 SubTask subTask1 = new SubTask(middle,endNum);
 //执行任务, fork() 表示异步的开始执行
 subTask.fork();
 subTask1.fork();
 }
 }
}

结果:

从上面的案例我们可以看到我们,创建了很多个线程执行,因为我测试的电脑是12线程的,所以这里实际是创建了12个线程,也侧面说明了充分调用了每个处理的线程处理能力 上面案例其实我们发现很熟悉的味道,那就是以前接触过的递归思想,将上面的案例图像化如下,更直观的看到,

上面的例子是无返回值的案例,下面我们来看一个典型的有返回值的案例,相信大家都听过及很熟悉斐波那契数列,这个数列有个特点就是最后一项的结果等于前两项的和,如: 0,1,1,2,3,5...f(n-2)+f(n-1) , 即第0项为0 ,第一项为1,则第二项为 0+1=1 ,以此类推。我们最初的解决方法就是使用递归来解决,如下计算第n项的数值:

 private int num(int num){
 if (num <= 1){
 return num;
 }
 num = num(num-1) + num(num -2);
 return num;
 }

从上面简单代码中可以看到,当 n<=1 时返回 n , 如果 n>1 则计算前一项的值 f1 ,在计算前两项的值 f2 , 再将两者相加得到结果,这就是典型的递归问题,也是对应我们的 ForkJoin 的工作模式,如下所示,根节点产生子任务,子任务再次衍生出子子任务,到最后在进行整合汇聚,得到结果。

我们通过 ForkJoinPool 来实现斐波那契数列的计算,如下展示:

/**
 * @url: i-code.online
 * @author: AnonyStar
 * @time: 2020/11/2 10:01
 */
public class ForkJoinApp3 {

 public static void main(String[] args) throws ExecutionException, InterruptedException {
 ForkJoinPool pool = new ForkJoinPool();
 //计算第二是项的数值
 final ForkJoinTask submit = pool.submit(new Fibonacci(20));
 // 获取结果,这里获取的就是异步任务的最终结果
 System.out.println(submit.get());

 }
}

class Fibonacci extends RecursiveTask{

 int num;
 public Fibonacci(int num){
 this.num = num;
 }

 @Override
 protected Integer compute() {
 if (num <= 1) return num;
 //创建子任务
 Fibonacci subTask1 = new Fibonacci(num - 1);
 Fibonacci subTask2 = new Fibonacci(num - 2);
 // 执行子任务
 subTask1.fork();
 subTask2.fork();
 //获取前两项的结果来计算和
 return subTask1.join()+subTask2.join();
 }
}

通过 ForkJoinPool 可以极大的发挥多核处理器的优势,尤其非常适合用于递归的场景,例如树的遍历、最优路径搜索等场景。 上面说的是 ForkJoinPool 的使用上的,下面我们来说一下其内部的构造,对于我们前面说的几种线程池来说,它们都是里面只有一个队列,所有的线程共享一个。但是在 ForkJoinPool 中,其内部有一个共享的任务队列,除此之外每个线程都有一个对应的双端队列 Deque , 当一个线程中任务被 Fork 分裂了,那么分裂出来的子任务就会放入到对应的线程自己的 Deque 中,而不是放入公共队列。这样对于每个线程来说成本会降低很多,可以直接从自己线程的队列中获取任务而不需要去公共队列中争夺,有效的减少了线程间的资源竞争和切换。

有一种情况,当线程有多个如 t1,t2,t3... ,在某一段时间线程 t1 的任务特别繁重,分裂了数十个子任务,但是线程 t0 此时却无事可做,它自己的 deque 队列为空,这时为了提高效率, t0 就会想办法帮助 t1 执行任务,这就是“ work-stealing ”的含义。 双端队列 deque 中,线程 t1 获取任务的逻辑是后进先出,也就是 LIFO(Last In Frist Out) ,而线程 t0 在“ steal ”偷线程 t1 的 deque 中的任务的逻辑是先进先出,也就是 FIFO(Fast In Frist Out) ,如图所示,图中很好的描述了两个线程使用双端队列分别获取任务的情景。你可以看到,使用 “ work-stealing ” 算法和双端队列很好地平衡了各线程的负载。

总结

到此这篇关于java中常见的6种线程池示例详解的文章就介绍到这了,更多相关java常见线程池内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!


推荐阅读
  • 吴石访谈:腾讯安全科恩实验室如何引领物联网安全研究
    腾讯安全科恩实验室曾两次成功破解特斯拉自动驾驶系统,并远程控制汽车,展示了其在汽车安全领域的强大实力。近日,该实验室负责人吴石接受了InfoQ的专访,详细介绍了团队未来的重点方向——物联网安全。 ... [详细]
  • 变量间相关性分析
    本文探讨了如何通过统计方法评估两个变量之间的关系强度,重点介绍了皮尔森相关系数的计算及其应用。除了数学公式外,文章还提供了Python编程实例,展示如何利用实际数据集(如泰坦尼克号乘客数据)进行相关性检验。 ... [详细]
  • 本文详细介绍了如何在Spring框架中设置事件发布器、定义事件监听器及响应事件的具体步骤。通过实现ApplicationEventPublisherAware接口来创建事件发布器,利用ApplicationEvent类定义自定义事件,并通过ApplicationListener接口来处理这些事件。 ... [详细]
  • TCP协议中的可靠传输机制分析
    本文深入探讨了TCP协议如何通过滑动窗口和超时重传来确保数据传输的可靠性,同时介绍了流量控制和拥塞控制的基本原理及其在实际网络通信中的应用。 ... [详细]
  • Maven + Spring + MyBatis + MySQL 环境搭建与实例解析
    本文详细介绍如何使用MySQL数据库进行环境搭建,包括创建数据库表并插入示例数据。随后,逐步指导如何配置Maven项目,整合Spring框架与MyBatis,实现高效的数据访问。 ... [详细]
  • 对于初学者而言,搭建一个高效稳定的 Python 开发环境是入门的关键一步。本文将详细介绍如何利用 Anaconda 和 Jupyter Notebook 来构建一个既易于管理又功能强大的开发环境。 ... [详细]
  • 使用TabActivity实现Android顶部选项卡功能
    本文介绍如何通过继承TabActivity来创建Android应用中的顶部选项卡。通过简单的步骤,您可以轻松地添加多个选项卡,并实现基本的界面切换功能。 ... [详细]
  • 软件测试行业深度解析:迈向高薪的必经之路
    本文深入探讨了软件测试行业的发展现状及未来趋势,旨在帮助有志于在该领域取得高薪的技术人员明确职业方向和发展路径。 ... [详细]
  • 本周三大青年学术分享会即将开启
    由雷锋网旗下的AI研习社主办,旨在促进AI领域的知识共享和技术交流。通过邀请来自学术界和工业界的专家进行在线分享,活动致力于搭建一个连接理论与实践的平台。 ... [详细]
  • 本题要求实现一个名为fun的函数,该函数的功能是从给定的字符串s中移除所有ASCII码为偶数值的字符,并将剩下的字符组成的新字符串存储在由t指向的数组中。 ... [详细]
  • 知识图谱与图神经网络在金融科技中的应用探讨
    本文详细介绍了融慧金科AI Lab负责人张凯博士在2020爱分析·中国人工智能高峰论坛上的演讲,探讨了知识图谱与图神经网络模型如何在金融科技领域发挥重要作用。 ... [详细]
  • 我的读书清单(持续更新)201705311.《一千零一夜》2006(四五年级)2.《中华上下五千年》2008(初一)3.《鲁滨孙漂流记》2008(初二)4.《钢铁是怎样炼成的》20 ... [详细]
  • MySQL InnoDB 存储引擎索引机制详解
    本文深入探讨了MySQL InnoDB存储引擎中的索引技术,包括索引的基本概念、数据结构与算法、B+树的特性及其在数据库中的应用,以及索引优化策略。 ... [详细]
  • AI炼金术:KNN分类器的构建与应用
    本文介绍了如何使用Python及其相关库(如NumPy、scikit-learn和matplotlib)构建KNN分类器模型。通过详细的数据准备、模型训练及新样本预测的过程,展示KNN算法的实际操作步骤。 ... [详细]
  • 龙蜥社区开发者访谈:技术生涯的三次蜕变 | 第3期
    龙蜥社区的开发者们通过自己的实践和经验,推动着开源技术的发展。本期「龙蜥开发者说」聚焦于一位资深开发者的三次技术转型,分享他在龙蜥社区的成长故事。 ... [详细]
author-avatar
佳臭臭_643
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有