热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

java搜索无向图中两点之间所有路径的算法

这篇文章主要介绍了java搜索无向图中两点之间所有路径的算法

参考 java查找无向连通图中两点间所有路径的算法,对代码进行了部分修改,并编写了测试用例。

算法要求:

1. 在一个无向连通图中求出两个给定点之间的所有路径;
2. 在所得路径上不能含有环路或重复的点;     

算法思想描述:

1. 整理节点间的关系,为每个节点建立一个集合,该集合中保存所有与该节点直接相连的节点(不包括该节点自身);

2. 定义两点一个为起始节点,另一个为终点,求解两者之间的所有路径的问题可以被分解为如下所述的子问题:对每一 个与起始节点直接相连的节点,求解它到终点的所有路径(路径上不包括起始节点)得到一个路径集合,将这些路径集合相加就可以得到起始节点到终点的所有路径;依次类推就可以应用递归的思想,层层递归直到终点,若发现希望得到的一条路径,则转储并打印输出;若发现环路,或发现死路,则停止寻路并返回;  

3. 用栈保存当前已经寻到的路径(不是完整路径)上的节点,在每一次寻到完整路径时弹出栈顶节点;而在遇到从栈顶节点无法继续向下寻路时也弹出该栈顶节点,从而实现回溯。

实现代码

1.Node.java

import java.util.ArrayList;
 
/* 表示一个节点以及和这个节点相连的所有节点 */
public class Node
{
 public String name = null;
 public ArrayList relatiOnNodes= new ArrayList();
 
 public String getName() {
 return name;
 }
 
 public void setName(String name) {
 this.name = name;
 }
 
 public ArrayList getRelationNodes() {
 return relationNodes;
 }
 
 public void setRelationNodes(ArrayList relationNodes) {
 this.relatiOnNodes= relationNodes;
 }
}

2.test.java

import java.util.ArrayList;
import java.util.Iterator;
import java.util.Stack;
 
 
public class test {
 /* 临时保存路径节点的栈 */
 public static Stack stack = new Stack();
 /* 存储路径的集合 */
 public static ArrayList sers = new ArrayList();
 
 /* 判断节点是否在栈中 */
 public static boolean isNodeInStack(Node node)
 {
 Iterator it = stack.iterator();
 while (it.hasNext()) {
 Node node1 = (Node) it.next();
 if (node == node1)
 return true;
 }
 return false;
 }
 
 /* 此时栈中的节点组成一条所求路径,转储并打印输出 */
 public static void showAndSavePath()
 {
 Object[] o = stack.toArray();
 for (int i = 0; i ");
 else
 System.out.print(nNode.getName());
 }
 sers.add(o); /* 转储 */
 System.out.println("\n");
 }
 
 /*
 * 寻找路径的方法 
 * cNode: 当前的起始节点currentNode
 * pNode: 当前起始节点的上一节点previousNode
 * sNode: 最初的起始节点startNode
 * eNode: 终点endNode
 */
 public static boolean getPaths(Node cNode, Node pNode, Node sNode, Node eNode) {
 Node nNode = null;
 /* 如果符合条件判断说明出现环路,不能再顺着该路径继续寻路,返回false */
 if (cNode != null && pNode != null && cNode == pNode)
 return false;
 
 if (cNode != null) {
 int i = 0;
 /* 起始节点入栈 */
 stack.push(cNode);
 /* 如果该起始节点就是终点,说明找到一条路径 */
 if (cNode == eNode)
 {
 /* 转储并打印输出该路径,返回true */
 showAndSavePath();
 return true;
 }
 /* 如果不是,继续寻路 */
 else
 {
 /* 
  * 从与当前起始节点cNode有连接关系的节点集中按顺序遍历得到一个节点
  * 作为下一次递归寻路时的起始节点 
  */
 nNode = cNode.getRelationNodes().get(i);
 while (nNode != null) {
  /*
  * 如果nNode是最初的起始节点或者nNode就是cNode的上一节点或者nNode已经在栈中 , 
  * 说明产生环路 ,应重新在与当前起始节点有连接关系的节点集中寻找nNode
  */
  if (pNode != null
  && (nNode == sNode || nNode == pNode || isNodeInStack(nNode))) {
  i++;
  if (i >= cNode.getRelationNodes().size())
  nNode = null;
  else
  nNode = cNode.getRelationNodes().get(i);
  continue;
  }
  /* 以nNode为新的起始节点,当前起始节点cNode为上一节点,递归调用寻路方法 */
  if (getPaths(nNode, cNode, sNode, eNode))/* 递归调用 */
  {
  /* 如果找到一条路径,则弹出栈顶节点 */
  stack.pop();
  }
  /* 继续在与cNode有连接关系的节点集中测试nNode */
  i++;
  if (i >= cNode.getRelationNodes().size())
  nNode = null;
  else
  nNode = cNode.getRelationNodes().get(i);
 }
 /* 
  * 当遍历完所有与cNode有连接关系的节点后,
  * 说明在以cNode为起始节点到终点的路径已经全部找到 
  */
 stack.pop();
 return false;
 }
 } else
 return false;
 }
 
 public static void main(String[] args) {
 /* 定义节点关系 */
 int nodeRalation[][] =
 {
 {1},  //0
 {0,5,2,3},//1
 {1,4}, //2
 {1,4}, //3
 {2,3,5}, //4
 {1,4}  //5
 };
 
 /* 定义节点数组 */
 Node[] node = new Node[nodeRalation.length];
 
 for(int i=0;i List = new ArrayList();
 
 for(int j=0;j

输出:

node0->node1->node5->node4

node0->node1->node2->node4

node0->node1->node3->node4

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


推荐阅读
  • 垂直泊车路径设计
    本文探讨了垂直泊车路径的设计原理与实现方法。垂直泊车是指汽车从特定位置出发,经过一系列横向和纵向移动,最终达到与车位垂直停放的状态。路径设计旨在确保泊车过程既高效又安全。 ... [详细]
  • 来自FallDream的博客,未经允许,请勿转载,谢谢。一天一套noi简直了.昨天勉强做完了noi2011今天教练又丢出来一套noi ... [详细]
  • 本文详细介绍了Socket在Linux内核中的实现机制,包括基本的Socket结构、协议操作集以及不同协议下的具体实现。通过这些内容,读者可以更好地理解Socket的工作原理。 ... [详细]
  • 探索CNN的可视化技术
    神经网络的可视化在理论学习与实践应用中扮演着至关重要的角色。本文深入探讨了三种有效的CNN(卷积神经网络)可视化方法,旨在帮助读者更好地理解和优化模型。 ... [详细]
  • 我整理了HMOV四大5G旗舰的参数,可依然没能拯救我的选择困难症
    伊瓢茕茕发自凹非寺量子位报道|公众号QbitAI报道了那么多发布会,依然无法选出要换的第一部5G手机。这不,随着华为P40系列发布,目前国 ... [详细]
  • 最优化算法与matlab应用3:最速下降法
    最优化算法与matlab应用3:最速下降法最速下降法是一种沿着N维目标函数的负梯度方向搜索最小值的方法。(1)算法原理函数的负梯度表示如下:搜索步长可调整ak,通常记为(第k次迭代 ... [详细]
  • Java高级工程师学习路径及面试准备指南
    本文基于一位朋友的PDF面试经验整理,涵盖了Java高级工程师所需掌握的核心知识点,包括数据结构与算法、计算机网络、数据库、操作系统等多个方面,并提供了详细的参考资料和学习建议。 ... [详细]
  • 本文探讨了在 Python 2.7 环境下,如何有效地对大量数据(如几百 KB 的字符串)进行加密和压缩,并确保能够准确无误地解密回原始数据。 ... [详细]
  • ACM经典书籍推荐
    本文介绍了几本在算法和计算机科学领域具有重要影响力的书籍,包括由Donald E. Knuth编著的《计算机程序设计艺术》第一卷,以及潘氏兄弟的数论经典教材等。这些书籍不仅是学习相关领域的宝贵资源,也是专业人士不可或缺的参考书。 ... [详细]
  • Linux内核中的内存反碎片技术解析
    本文深入探讨了Linux内核中实现的内存反碎片技术,包括其历史发展、关键概念如虚拟可移动区域以及具体的内存碎片整理策略。旨在为开发者提供全面的技术理解。 ... [详细]
  • 通过两幅详细的思维导图,全面解析Spring框架中应用的设计模式及其核心编程理念。 ... [详细]
  • 本文详细探讨了 Android Service 组件中 onStartCommand 方法的四种不同返回值及其应用场景。Service 可以在后台执行长时间的操作,无需提供用户界面,支持通过启动和绑定两种方式创建。 ... [详细]
  • 苹果官方在线商店(中国)提供了关于MacBook Pro的详细信息。通过先进的工厂校准技术,新MacBook Pro能够精确地适应多种色彩空间标准,如sRGB、BT.601、BT.709及P3-ST.2084(HDR),确保用户获得最佳视觉效果。 ... [详细]
  • 如何高效学习鸿蒙操作系统:开发者指南
    本文探讨了开发者如何更有效地学习鸿蒙操作系统,提供了来自行业专家的建议,包括系统化学习方法、职业规划建议以及具体的开发技巧。 ... [详细]
  • 本文探讨了在AspNetForums平台中实施基于角色的权限控制系统的方法,旨在为不同级别的用户提供合适的访问权限,确保系统的安全性和可用性。 ... [详细]
author-avatar
宝宝壮壮妈
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有