热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

java数据结构之树基本概念解析及代码示例

这篇文章主要介绍了java数据结构之树基本概念解析及代码示例,介绍了树的定义,基本术语,主要操作及实现等相关内容,具有一定参考价值,需要的朋友可了解下。

Java中树的存储结构实现 一、树 树与线性表、栈、队列等线性结构不同,树是一...节点与节点之间的父子关系,可以为每个节点增加一个parent域,用以记录该节点的父点

树是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>0)个有限节点组成一个具有层次关系的集合。把 它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

树定义和基本术语

定义

树(Tree)是n(n≥0)个结点的有限集T,并且当n>0时满足下列条件:

(1)有且仅有一个特定的称为根(Root)的结点;

(2)当n>1时,其余结点可以划分为m(m>0)个互不相交的有限集T1、T2、…、Tm,每个集Ti(1≤i≤m)均为树,且称为树T的子树(SubTree)。

特别地,不含任何结点(即n=0)的树,称为空树。

如下就是一棵树的结构:

基本术语

结点:存储数据元素和指向子树的链接,由数据元素和构造数据元素之间关系的引用组成。
孩子结点:树中一个结点的子树的根结点称为这个结点的孩子结点,如图1中的A的孩子结点有B、C、D
双亲结点:树中某个结点有孩子结点(即该结点的度不为0),该结点称为它孩子结点的双亲结点,也叫前驱结点。双亲结点和孩子结点是相互的,如图1中,A的孩子结点是B、C、D,B、C、D的双亲结点是A。
兄弟结点:具有相同双亲结点(即同一个前驱)的结点称为兄弟结点,如图1中B、B、D为兄弟结点。
结点的度:结点所有子树的个数称为该结点的度,如图1,A的度为3,B的度为2.
树的度:树中所有结点的度的最大值称为树的度,如图1的度为3.
叶子结点:度为0的结点称为叶子结点,也叫终端结点。如图1的K、L、F、G、M、I、J
分支结点:度不为0的结点称为分支结点,也叫非终端结点。如图1的A、B、C、D、E、H
结点的层次:从根结点到树中某结点所经路径的分支数称为该结点的层次。根结点的层次一般为1(也可以自己定义为0),这样,其它结点的层次是其双亲结点的层次加1.
树的深度:树中所有结点的层次的最大值称为该树的深度(也就是最下面那个结点的层次)。
有序树和无序树:树中任意一个结点的各子树按从左到右是有序的,称为有序树,否则称为无序树。
树的抽象数据类型描述
数据元素:具有相同特性的数据元素的集合。
结构关系:树中数据元素间的结构关系由树的定义确定。

基本操作:树的主要操作有

(1)创建树IntTree(&T)
         创建1个空树T。
(2)销毁树DestroyTree(&T)
(3)构造树CreatTree(&T,deinition)
(4)置空树ClearTree(&T)
          将树T置为空树。
(5)判空树TreeEmpty(T)
(6)求树的深度TreeDepth(T)
(7)获得树根Root(T)
(8)获取结点Value(T,cur_e,&e)
         将树中结点cur_e存入e单元中。
(9)数据赋值Assign(T,cur_e,value)
         将结点value,赋值于树T的结点cur_e中。
(10)获得双亲Parent(T,cur_e)
        返回树T中结点cur_e的双亲结点。
(11)获得最左孩子LeftChild(T,cur_e)
        返回树T中结点cur_e的最左孩子。
(12)获得右兄弟RightSibling(T,cur_e)
        返回树T中结点cur_e的右兄弟。
(13)插入子树InsertChild(&T,&p,i,c)
      将树c插入到树T中p指向结点的第i个子树之前。
(14)删除子树DeleteChild(&T,&p,i)
       删除树T中p指向结点的第i个子树。
(15)遍历树TraverseTree(T,visit())

树的实现

树是一种递归结构,表示方式一般有孩子表示法和孩子兄弟表示法两种。树实现方式有很多种、有可以由广义表的递归实现,也可以有二叉树实现,其中最常见的是将树用孩子兄弟表示法转化成二叉树来实现。

下面以孩子表示法为例讲一下树的实现:

树的定义和实现

package datastructure.tree;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
/** 
   * 树的定义和实现 
   * @author Administrator 
   * 
   */
public class Tree {
	private Object data;
	private List childs;
	public Tree(){
		data = null;
		childs = new ArrayList();
		childs.clear();
	}
	public Tree(Object data) {
		this.data = data;
		childs = new ArrayList();
		childs.clear();
	}
	/** 
     * 添加子树 
     * @param tree 子树 
     */
	public void addNode(Tree tree) {
		childs.add(tree);
	}
	/** 
     * 置空树 
     */
	public void clearTree() {
		data = null;
		childs.clear();
	}
	/** 
     * 求树的深度 
     * 这方法还有点问题,有待完善 
     * @return 树的深度 
     */
	public int dept() {
		return dept(this);
	}
	/** 
     * 求树的深度 
     * 这方法还有点问题,有待完善 
     * @param tree 
     * @return 
     */
	private int dept(Tree tree) {
		if(tree.isEmpty()) {
			return 0;
		} else if(tree.isLeaf()) {
			return 1;
		} else {
			int n = childs.size();
			int[] a = new int[n];
			for (int i=0; i getChilds() {
		return childs;
	}
	/** 
     * 获得根结点的数据 
     * @return 
     */
	public Object getRootData() {
		return data;
	}
	/** 
     * 判断是否为空树 
     * @return 如果为空,返回true,否则返回false 
     */
	public Boolean isEmpty() {
		if(childs.isEmpty() && data == null) 
		        return true;
		return false;
	}
	/** 
     * 判断是否为叶子结点 
     * @return 
     */
	public Boolean isLeaf() {
		if(childs.isEmpty()) 
		        return true;
		return false;
	}
	/** 
     * 获得树根 
     * @return 树的根 
     */
	public Tree root() {
		return this;
	}
	/** 
     * 设置根结点的数据 
     */
	public void setRootData(Object data) {
		this.data = data;
	}
	/** 
     * 求结点数 
     * 这方法还有点问题,有待完善 
     * @return 结点的个数 
     */
	public int size() {
		return size(this);
	}
	/** 
     * 求结点数 
     * 这方法还有点问题,有待完善 
     * @param tree 
     * @return 
     */
	private int size(Tree tree) {
		if(tree.isEmpty()) {
			return 0;
		} else if(tree.isLeaf()) {
			return 1;
		} else {
			int count = 1;
			int n = childs.size();
			for (int i=0; i

树的遍历

树的遍历有两种

前根遍历

(1).访问根结点;

(2).按照从左到右的次序行根遍历根结点的第一棵子树;

后根遍历

(1).按照从左到右的次序行根遍历根结点的第一棵子树;

(2).访问根结点;

Visit.Java

package datastructure.tree;
import datastructure.tree.btree.BTree;
/** 
   * 对结点进行操作的接口,规定树的遍历的类必须实现这个接口 
   * @author Administrator 
   * 
   */
public interface Visit {
	/** 
     * 对结点进行某种操作 
     * @param btree 树的结点 
     */
	public void visit(BTree btree);
}

order.java

package datastructure.tree;
import java.util.List;
/** 
   * 树的遍历 
   * @author Administrator 
   * 
   */
public class Order {
	/** 
     * 先根遍历 
     * @param root 要的根结点 
     */
	public void preOrder(Tree root) {
		if(!root.isEmpty()) {
			visit(root);
			for (Tree child : root.getChilds()) {
				if(child != null) {
					preOrder(child);
				}
			}
		}
	}
	/** 
     * 后根遍历 
     * @param root 树的根结点 
     */
	public void postOrder(Tree root) {
		if(!root.isEmpty()) {
			for (Tree child : root.getChilds()) {
				if(child != null) {
					preOrder(child);
				}
			}
			visit(root);
		}
	}
	public void visit(Tree tree) {
		System.out.print("\t" + tree.getRootData());
	}
}

测试:

要遍历的树如下:

package datastructure.tree;
import java.util.Iterator;
import java.util.Scanner;
public class TreeTest {
	/** 
     * @param args 
     */
	public static void main(String[] args) {
		Tree root = new Tree("A");
		root.addNode(new Tree("B"));
		root.addNode(new Tree("C"));
		root.addNode(new Tree("D"));
		Tree t = null;
		t = root.getChild(0);
		t.addNode(new Tree("L"));
		t.addNode(new Tree("E"));
		t = root.getChild(1);
		t.addNode(new Tree("F"));
		t = root.getChild(2);
		t.addNode(new Tree("I"));
		t.addNode(new Tree("H"));
		t = t.getFirstChild();
		t.addNode(new Tree("L"));
		System.out.println("first node:" + root.getRootData());
		//System.out.println("size:" + root.size()); 
		//System.out.println("dept:" + root.dept()); 
		System.out.println("is left:" + root.isLeaf());
		System.out.println("data:" + root.getRootData());
		Order order = new Order();
		System.out.println("前根遍历:");
		order.preOrder(root);
		System.out.println("\n后根遍历:");
		order.postOrder(root);
	}
}

结果:

first node:A
is left:false
data:A
前根遍历:
A BL E C F DI L H
后根遍历:
B LE C F D IL H A

结束语:

以上就是本文关于java数据结构之树基本概念解析及代码示例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

Java编程求二叉树的镜像两种方法介绍

java算法实现红黑树完整代码示例

java实现遍历树形菜单两种实现代码分享

如有不足之处,欢迎留言指出。


推荐阅读
  • 本文将详细介绍如何配置并整合MVP架构、Retrofit网络请求库、Dagger2依赖注入框架以及RxAndroid响应式编程库,构建高效、模块化的Android应用。 ... [详细]
  • 如何为PDF文档添加水印?简单步骤实现
    为了增强PDF文档的安全性和版权保护,添加水印是一个有效的方法。本文将介绍如何通过专业软件或在线工具轻松为PDF文档添加水印,确保您的文档在共享时仍能保持其独特性和安全性。 ... [详细]
  • 深入理解MongoDB的SCRAM-SHA-1认证流程
    本文详细解析了MongoDB的SCRAM-SHA-1认证机制的具体步骤,旨在帮助读者深入了解这一安全认证方法的工作原理及其在实际应用中的重要性。 ... [详细]
  • Web开发实践:创建连连看小游戏
    本文详细介绍了如何在Web环境中开发一款连连看小游戏,适合初学者和技术爱好者参考。通过本文,您将了解游戏的基本结构、连线算法以及实现方法。 ... [详细]
  • 本文介绍了如何通过 ADB 命令行工具启动和停止 Android 应用。通过简单的命令,您可以轻松地控制设备上的应用运行状态。 ... [详细]
  • 本文介绍了如何使用jQuery获取浏览器窗口的可视区域高度、文档的整体高度以及宽度等关键尺寸信息,包括边界、填充和边距在内的完整尺寸。 ... [详细]
  • SPFA算法详解与应用
    当图中包含负权边时,传统的最短路径算法如Dijkstra不再适用,而Bellman-Ford算法虽然能解决问题,但其时间复杂度过高。SPFA算法作为一种改进的Bellman-Ford算法,能够在多数情况下提供更高效的解决方案。本文将详细介绍SPFA算法的原理、实现步骤及其应用场景。 ... [详细]
  • 本文详细介绍了Socket在Linux内核中的实现机制,包括基本的Socket结构、协议操作集以及不同协议下的具体实现。通过这些内容,读者可以更好地理解Socket的工作原理。 ... [详细]
  • 探索CNN的可视化技术
    神经网络的可视化在理论学习与实践应用中扮演着至关重要的角色。本文深入探讨了三种有效的CNN(卷积神经网络)可视化方法,旨在帮助读者更好地理解和优化模型。 ... [详细]
  • 我整理了HMOV四大5G旗舰的参数,可依然没能拯救我的选择困难症
    伊瓢茕茕发自凹非寺量子位报道|公众号QbitAI报道了那么多发布会,依然无法选出要换的第一部5G手机。这不,随着华为P40系列发布,目前国 ... [详细]
  • 最优化算法与matlab应用3:最速下降法
    最优化算法与matlab应用3:最速下降法最速下降法是一种沿着N维目标函数的负梯度方向搜索最小值的方法。(1)算法原理函数的负梯度表示如下:搜索步长可调整ak,通常记为(第k次迭代 ... [详细]
  • Java高级工程师学习路径及面试准备指南
    本文基于一位朋友的PDF面试经验整理,涵盖了Java高级工程师所需掌握的核心知识点,包括数据结构与算法、计算机网络、数据库、操作系统等多个方面,并提供了详细的参考资料和学习建议。 ... [详细]
  • 本文探讨了在 Python 2.7 环境下,如何有效地对大量数据(如几百 KB 的字符串)进行加密和压缩,并确保能够准确无误地解密回原始数据。 ... [详细]
  • ACM经典书籍推荐
    本文介绍了几本在算法和计算机科学领域具有重要影响力的书籍,包括由Donald E. Knuth编著的《计算机程序设计艺术》第一卷,以及潘氏兄弟的数论经典教材等。这些书籍不仅是学习相关领域的宝贵资源,也是专业人士不可或缺的参考书。 ... [详细]
  • Linux内核中的内存反碎片技术解析
    本文深入探讨了Linux内核中实现的内存反碎片技术,包括其历史发展、关键概念如虚拟可移动区域以及具体的内存碎片整理策略。旨在为开发者提供全面的技术理解。 ... [详细]
author-avatar
大布丁
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有