热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深入解析iOSObjective-C中的对象内存对齐规则及其优化策略

iOS OC 对象的内存对齐原则 1.问题的引入 初始化一个OC类,具有如下属性: #import NS_ASSUME_NONNULL_BEGIN @interface LGTeacher
iOS OC 对象的内存对齐原则 1.问题的引入

初始化一个OC类,具有如下属性:

#import 

NS_ASSUME_NONNULL_BEGIN

@interface LGTeacher : NSObject
@property (nonatomic, copy) NSString *name;
@property (nonatomic, assign) int age;
@property (nonatomic, assign) long height;
@property (nonatomic, strong) NSString *hobby;

@end

NS_ASSUME_NONNULL_END

初始化对象,并获取对象的内存size:

        LGTeacher  *p = [[LGTeacher alloc] init];
        p.name = @"LG_Cooci";
        p.age  = 18;
        p.height = 185;
        p.hobby  = @"女";
        
        NSLog(@"%lu - %lu",class_getInstanceSize([p class]),malloc_size((__bridge const void *)(p)));

打印结果:

iOS OC 对象的内存对齐原则
image

由以上打印结果可以看出 class_getInstanceSizemalloc_size获取到的内存大小不一样,那么是什么导致的两者获取同一对象的内存大小不一样呢?我们下一步继续探索。

首先我们先手动计算一下这个对象所占的内存:
isa — 8字节,name — 8字节, age — 4字节, height — 8字节, hobby — 8字节;总计36字节。

我们跟踪objc源码可以发现改变size的地方有两个地方:

iOS OC 对象的内存对齐原则
image
    1. instanceSize
      instanceSize 继续跟踪,
size_t instanceSize(size_t extraBytes) const {
        if (fastpath(cache.hasFastInstanceSize(extraBytes))) {
            return cache.fastInstanceSize(extraBytes);
        }

        size_t size = alignedInstanceSize() + extraBytes;// alignedInstanceSize
        // CF requires all objects be at least 16 bytes.
        if (size 

由以上源码可以得到instanceSize 使用8字节对齐原则处理Size,并且最小为16字节。
其中的原理可以参考本人其他篇文章:内存对齐小记,内存对齐算法。

    1. calloc

由于calloc属于malloc源码里面

跟踪libmalloc源码:

calloc源码实现:

void *
calloc(size_t num_items, size_t size)
{
    void *retval;
    retval = malloc_zone_calloc(default_zone, num_items, size);
    if (retval == NULL) {
        errno = ENOMEM;
    }
    return retval;
}

// malloc_zone_calloc
void *
    malloc_zone_calloc(malloc_zone_t *zone, size_t num_items, size_t size)
{
    MALLOC_TRACE(TRACE_calloc | DBG_FUNC_START, (uintptr_t)zone, num_items, size, 0);

    void *ptr;
    if (malloc_check_start && (malloc_check_counter++ >= malloc_check_start)) {
        internal_check();
    }

    ptr = zone->calloc(zone, num_items, size);
    
    if (malloc_logger) {
        malloc_logger(MALLOC_LOG_TYPE_ALLOCATE | MALLOC_LOG_TYPE_HAS_ZONE | MALLOC_LOG_TYPE_CLEARED, (uintptr_t)zone,
                (uintptr_t)(num_items * size), 0, (uintptr_t)ptr, 0);
    }

    MALLOC_TRACE(TRACE_calloc | DBG_FUNC_END, (uintptr_t)zone, num_items, size, (uintptr_t)ptr);
    return ptr;
}

断点打印 zone->calloc

  • ①:得到其真实调用为default_zone_calloc
  • ②:搜索default_zone_calloc继续跟进,打印default_zone_calloc内部的zone->calloc得到 nano_calloc
  • ③:分析nano_calloc源码可以知道在 _nano_malloc_check_clear内进行了相关操作
static void *
default_zone_calloc(malloc_zone_t *zone, size_t num_items, size_t size)
{
    zOne= runtime_default_zone();
    
    return zone->calloc(zone, num_items, size);
}

static void *
nano_calloc(nanozone_t *nanozone, size_t num_items, size_t size)
{
    size_t total_bytes;

    if (calloc_get_size(num_items, size, 0, &total_bytes)) {
        return NULL;
    }

    if (total_bytes helper_zone);
    return zone->calloc(zone, 1, total_bytes);
}

跳转到_nano_malloc_check_clear内部发现代码很多,一脸懵逼,但是仔细一看很多都是做一些容错判断,除去这些代码后,返现与size有关的只有一行代码:

size_t slot_bytes = segregated_size_to_fit(nanozone, size, &slot_key);

跳转进 segregated_size_to_fit 可以看到又是内存对齐的代码,这里的内存对齐是以16字节原则进行对齐的。

内存对齐的原理可以参考本人其他篇文章:内存对齐小记,内存对齐算法。

#define SHIFT_NANO_QUANTUM      4
#define NANO_REGIME_QUANTA_SIZE (1 > SHIFT_NANO_QUANTUM; // round up and shift for number of quanta
    slot_bytes = k 
总结

经过上述的各种分析,我们可以得到的结论是instanceSize是以8字节进行对齐的, 后面calloc是以16字节进行对齐的,说明calloc进一步对对象进行了处理。也就解释了我们打印出来的40-48了。

由以上可以知道对象申请的内存大小和系统开辟的大小存在不一致的情况,8字节对齐应用于对象的属性,16字节对齐应用于对象,由于对象的内存是连续的,这样可以规避一些不必要的风险,以空间换时间来得到更高的安全性。


推荐阅读
  • 本文详细介绍了Java中org.neo4j.helpers.collection.Iterators.single()方法的功能、使用场景及代码示例,帮助开发者更好地理解和应用该方法。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • 本文详细介绍了如何构建一个高效的UI管理系统,集中处理UI页面的打开、关闭、层级管理和页面跳转等问题。通过UIManager统一管理外部切换逻辑,实现功能逻辑分散化和代码复用,支持多人协作开发。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 在前两篇文章中,我们探讨了 ControllerDescriptor 和 ActionDescriptor 这两个描述对象,分别对应控制器和操作方法。本文将基于 MVC3 源码进一步分析 ParameterDescriptor,即用于描述 Action 方法参数的对象,并详细介绍其工作原理。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • Java 中的 BigDecimal pow()方法,示例 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 本文深入探讨了 Java 中的 Serializable 接口,解释了其实现机制、用途及注意事项,帮助开发者更好地理解和使用序列化功能。 ... [详细]
  • 将Web服务部署到Tomcat
    本文介绍了如何在JDeveloper 12c中创建一个Java项目,并将其打包为Web服务,然后部署到Tomcat服务器。内容涵盖从项目创建、编写Web服务代码、配置相关XML文件到最终的本地部署和验证。 ... [详细]
  • 本文介绍了如何在C#中启动一个应用程序,并通过枚举窗口来获取其主窗口句柄。当使用Process类启动程序时,我们通常只能获得进程的句柄,而主窗口句柄可能为0。因此,我们需要使用API函数和回调机制来准确获取主窗口句柄。 ... [详细]
  • 本文详细解析了Python中的os和sys模块,介绍了它们的功能、常用方法及其在实际编程中的应用。 ... [详细]
author-avatar
蓝染
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有