热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深入解析iOSObjective-C中的对象内存对齐规则及其优化策略

iOS OC 对象的内存对齐原则 1.问题的引入 初始化一个OC类,具有如下属性: #import NS_ASSUME_NONNULL_BEGIN @interface LGTeacher
iOS OC 对象的内存对齐原则 1.问题的引入

初始化一个OC类,具有如下属性:

#import 

NS_ASSUME_NONNULL_BEGIN

@interface LGTeacher : NSObject
@property (nonatomic, copy) NSString *name;
@property (nonatomic, assign) int age;
@property (nonatomic, assign) long height;
@property (nonatomic, strong) NSString *hobby;

@end

NS_ASSUME_NONNULL_END

初始化对象,并获取对象的内存size:

        LGTeacher  *p = [[LGTeacher alloc] init];
        p.name = @"LG_Cooci";
        p.age  = 18;
        p.height = 185;
        p.hobby  = @"女";
        
        NSLog(@"%lu - %lu",class_getInstanceSize([p class]),malloc_size((__bridge const void *)(p)));

打印结果:

iOS OC 对象的内存对齐原则
image

由以上打印结果可以看出 class_getInstanceSizemalloc_size获取到的内存大小不一样,那么是什么导致的两者获取同一对象的内存大小不一样呢?我们下一步继续探索。

首先我们先手动计算一下这个对象所占的内存:
isa — 8字节,name — 8字节, age — 4字节, height — 8字节, hobby — 8字节;总计36字节。

我们跟踪objc源码可以发现改变size的地方有两个地方:

iOS OC 对象的内存对齐原则
image
    1. instanceSize
      instanceSize 继续跟踪,
size_t instanceSize(size_t extraBytes) const {
        if (fastpath(cache.hasFastInstanceSize(extraBytes))) {
            return cache.fastInstanceSize(extraBytes);
        }

        size_t size = alignedInstanceSize() + extraBytes;// alignedInstanceSize
        // CF requires all objects be at least 16 bytes.
        if (size 

由以上源码可以得到instanceSize 使用8字节对齐原则处理Size,并且最小为16字节。
其中的原理可以参考本人其他篇文章:内存对齐小记,内存对齐算法。

    1. calloc

由于calloc属于malloc源码里面

跟踪libmalloc源码:

calloc源码实现:

void *
calloc(size_t num_items, size_t size)
{
    void *retval;
    retval = malloc_zone_calloc(default_zone, num_items, size);
    if (retval == NULL) {
        errno = ENOMEM;
    }
    return retval;
}

// malloc_zone_calloc
void *
    malloc_zone_calloc(malloc_zone_t *zone, size_t num_items, size_t size)
{
    MALLOC_TRACE(TRACE_calloc | DBG_FUNC_START, (uintptr_t)zone, num_items, size, 0);

    void *ptr;
    if (malloc_check_start && (malloc_check_counter++ >= malloc_check_start)) {
        internal_check();
    }

    ptr = zone->calloc(zone, num_items, size);
    
    if (malloc_logger) {
        malloc_logger(MALLOC_LOG_TYPE_ALLOCATE | MALLOC_LOG_TYPE_HAS_ZONE | MALLOC_LOG_TYPE_CLEARED, (uintptr_t)zone,
                (uintptr_t)(num_items * size), 0, (uintptr_t)ptr, 0);
    }

    MALLOC_TRACE(TRACE_calloc | DBG_FUNC_END, (uintptr_t)zone, num_items, size, (uintptr_t)ptr);
    return ptr;
}

断点打印 zone->calloc

  • ①:得到其真实调用为default_zone_calloc
  • ②:搜索default_zone_calloc继续跟进,打印default_zone_calloc内部的zone->calloc得到 nano_calloc
  • ③:分析nano_calloc源码可以知道在 _nano_malloc_check_clear内进行了相关操作
static void *
default_zone_calloc(malloc_zone_t *zone, size_t num_items, size_t size)
{
    zOne= runtime_default_zone();
    
    return zone->calloc(zone, num_items, size);
}

static void *
nano_calloc(nanozone_t *nanozone, size_t num_items, size_t size)
{
    size_t total_bytes;

    if (calloc_get_size(num_items, size, 0, &total_bytes)) {
        return NULL;
    }

    if (total_bytes helper_zone);
    return zone->calloc(zone, 1, total_bytes);
}

跳转到_nano_malloc_check_clear内部发现代码很多,一脸懵逼,但是仔细一看很多都是做一些容错判断,除去这些代码后,返现与size有关的只有一行代码:

size_t slot_bytes = segregated_size_to_fit(nanozone, size, &slot_key);

跳转进 segregated_size_to_fit 可以看到又是内存对齐的代码,这里的内存对齐是以16字节原则进行对齐的。

内存对齐的原理可以参考本人其他篇文章:内存对齐小记,内存对齐算法。

#define SHIFT_NANO_QUANTUM      4
#define NANO_REGIME_QUANTA_SIZE (1 > SHIFT_NANO_QUANTUM; // round up and shift for number of quanta
    slot_bytes = k 
总结

经过上述的各种分析,我们可以得到的结论是instanceSize是以8字节进行对齐的, 后面calloc是以16字节进行对齐的,说明calloc进一步对对象进行了处理。也就解释了我们打印出来的40-48了。

由以上可以知道对象申请的内存大小和系统开辟的大小存在不一致的情况,8字节对齐应用于对象的属性,16字节对齐应用于对象,由于对象的内存是连续的,这样可以规避一些不必要的风险,以空间换时间来得到更高的安全性。


推荐阅读
  • 2018-2019学年第六周《Java数据结构与算法》学习总结
    本文总结了2018-2019学年第六周在《Java数据结构与算法》课程中的学习内容,重点介绍了非线性数据结构——树的相关知识及其应用。 ... [详细]
  • 深入解析Java枚举及其高级特性
    本文详细介绍了Java枚举的概念、语法、使用规则和应用场景,并探讨了其在实际编程中的高级应用。所有相关内容已收录于GitHub仓库[JavaLearningmanual](https://github.com/Ziphtracks/JavaLearningmanual),欢迎Star并持续关注。 ... [详细]
  • 本文介绍了如何在 C# 和 XNA 框架中实现一个自定义的 3x3 矩阵类(MMatrix33),旨在深入理解矩阵运算及其应用场景。该类参考了 AS3 Starling 和其他相关资源,以确保算法的准确性和高效性。 ... [详细]
  • 由二叉树到贪心算法
    二叉树很重要树是数据结构中的重中之重,尤其以各类二叉树为学习的难点。单就面试而言,在 ... [详细]
  • Java多线程实现:从1到100分段求和并汇总结果
    本文介绍如何使用Java编写一个程序,通过10个线程分别计算不同区间的和,并最终汇总所有线程的结果。每个线程负责计算一段连续的整数之和,最后将所有线程的结果相加。 ... [详细]
  • 探讨ChatGPT在法律和版权方面的潜在风险及影响,分析其作为内容创造工具的合法性和合规性。 ... [详细]
  • 本题要求在一组数中反复取出两个数相加,并将结果放回数组中,最终求出最小的总加法代价。这是一个经典的哈夫曼编码问题,利用贪心算法可以有效地解决。 ... [详细]
  • 本文将详细探讨 Java 中提供的不可变集合(如 `Collections.unmodifiableXXX`)和同步集合(如 `Collections.synchronizedXXX`)的实现原理及使用方法,帮助开发者更好地理解和应用这些工具。 ... [详细]
  • 本题来自WC2014,题目编号为BZOJ3435、洛谷P3920和UOJ55。该问题描述了一棵不断生长的带权树及其节点上小精灵之间的友谊关系,要求实时计算每次新增节点后树上所有可能的朋友对数。 ... [详细]
  • 本文介绍如何使用MFC和ADO技术调用SQL Server中的存储过程,以查询指定小区在特定时间段内的通话统计数据。通过用户界面选择小区ID、开始时间和结束时间,系统将计算并展示小时级的通话量、拥塞率及半速率通话比例。 ... [详细]
  • This request pertains to exporting the hosted_zone_id attribute associated with the aws_rds_cluster resource in Terraform configurations. The absence of this attribute can lead to issues when integrating DNS records with Route 53. ... [详细]
  • JavaScript中的数组是数据集合的核心结构之一,内置了多种实用的方法。掌握这些方法不仅能提高开发效率,还能显著提升代码的质量和可读性。本文将详细介绍数组的创建方式及常见操作方法。 ... [详细]
  • 本文探讨了仅对图像文件的内容进行加密的方法,而不加密整个文件。通过这种方式,可以保护图像中的敏感信息,同时保持文件的其他部分不受影响。 ... [详细]
  • 本文探讨了符号三角形问题,该问题涉及由相同数量的“+”和“-”符号组成的三角形。通过递归回溯法,可以有效地搜索并计算符合条件的符号三角形的数量。 ... [详细]
  • 本文介绍了如何在iOS应用中自定义导航栏按钮,包括使用普通按钮和图片生成导航条专用按钮的方法。同时,探讨了在不同版本的iOS系统中实现多按钮布局的技术方案。 ... [详细]
author-avatar
蓝染
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有