热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

hive2.3.4安装过程

注:我的Hadoop版本是2.7.3Hadoop安装参考我的博客https:blog.csdn.nettszxlzcarticledetails61635411下载hive,解压h

注:我的Hadoop版本是2.7.3 Hadoop安装参考我的博客 https://blog.csdn.net/tszxlzc/article/details/61635411

  1. 下载hive,解压hive文件
[[email protected] local]#  wget http://mirror.bit.edu.cn/apache/hive/hive-2.3.4/apache-hive-2.3.4-bin.tar.gz
[[email protected] local]# tar -xzvf apache-hive-2.3.4-bin.tar.gz
  1. 将hive加到环境变量
[[email protected] apache-hive-2.3.4-bin]# export HIVE_HOME=/usr/local/apache-hive-2.3.4-bin
[[email protected] apache-hive-2.3.4-bin]# export PATH=$HIVE_HOME/bin:$PATH
  1. hadoop分布式或伪分布式,hive数据会存在hdfs上,默认放在目录下 /user/hive/warehouse,所以先创建目录
  $ $HADOOP_HOME/bin/hadoop fs -mkdir       /tmp
  $ $HADOOP_HOME/bin/hadoop fs -mkdir       /user/hive/warehouse
  $ $HADOOP_HOME/bin/hadoop fs -chmod g+w   /tmp
  $ $HADOOP_HOME/bin/hadoop fs -chmod g+w   /user/hive/warehouse
  1. 在/usr/local/apache-hive-2.3.4-bin/conf 目录下创建hive-site.xml文件
<configuration>
 <property>
    <name>datanucleus.schema.autoCreateAllname>
    <value>truevalue>
  property>

<property>
<name>javax.jdo.option.ConnectionURLname>
<value>jdbc:mysql://192.168.152.128:3306/hive_db?createDatabaseIfNotExist=truevalue>
<description>JDBC connect string for a JDBC metastoredescription>
property>
 
<property>
<name>javax.jdo.option.ConnectionDriverNamename>
<value>com.mysql.jdbc.Drivervalue>
<description>Driver class name for a JDBC metastoredescription>
property>
 
<property>
<name>javax.jdo.option.ConnectionUserNamename>
<value>rootvalue>
<description>username to use against metastore databasedescription>
property>
 
<property>
<name>javax.jdo.option.ConnectionPasswordname>
<value>123456value>
<description>password to use against metastore databasedescription>
property>
configuration>

  1. 在/usr/local/apache-hive-2.3.4-bin/lib目录下下载mysql驱动
[[email protected] lib]# wget http://central.maven.org/maven2/mysql/mysql-connector-java/5.1.37/mysql-connector-java-5.1.37.jar
  1. 初始化hive元数据到mysql
[[email protected] conf]# schematool -dbType mysql -initSchema
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/apache-hive-2.3.4-bin/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Metastore connection URL:	 jdbc:mysql://192.168.152.128:3306/hive_db?createDatabaseIfNotExist=true
Metastore Connection Driver :	 com.mysql.jdbc.Driver
Metastore connection User:	 root
Starting metastore schema initialization to 2.3.0
Initialization script hive-schema-2.3.0.mysql.sql
Initialization script completed
schemaTool completed

  1. 启动hive,并创建一个表验证
[[email protected] conf]# hive
which: no hbase in (/usr/local/apache-hive-2.3.4-bin/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/usr/local/jdk1.8.0_111/bin:/usr/local/hadoop-2.7.3/bin:/usr/local/hadoop-2.7.3/sbin:/root/bin)
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/apache-hive-2.3.4-bin/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]

Logging initialized using configuration in jar:file:/usr/local/apache-hive-2.3.4-bin/lib/hive-common-2.3.4.jar!/hive-log4j2.properties Async: true
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
hive> create table x (a int);
OK
Time taken: 7.151 seconds
hive> 

至此hive创建表成功,还可以到hdfs查看到表已放到仓库目录下
hive 2.3.4安装过程

问题记录:

  1. 由于我的hive和mysql在两个不同的虚拟机上,hive机器ping不同mysql机器,而mysql机器可以ping通hive机器,发现是hive机器网络选择了桥接模式,而mysql机器网络选择了NAT模式。将hive机器的网络改为NAT模式,就可以初始化hive元数据了
  2. 另外要查看hive的日志到 /tmp/root目录下查看,因为我是用root用户操作的

推荐阅读
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • Hadoop平台警告解决:无法加载本机Hadoop库的全面应对方案
    本文探讨了在Hadoop平台上遇到“无法加载本机Hadoop库”警告的多种解决方案。首先,通过修改日志配置文件来忽略该警告,这一方法被证明是有效的。其次,尝试指定本地库的路径,但未能解决问题。接着,尝试不使用Hadoop本地库,同样没有效果。然后,通过替换现有的Hadoop本地库,成功解决了问题。最后,根据Hadoop的源代码自行编译本地库,也达到了预期的效果。以上方法适用于macOS系统。 ... [详细]
  • Web开发框架概览:Java与JavaScript技术及框架综述
    Web开发涉及服务器端和客户端的协同工作。在服务器端,Java是一种优秀的编程语言,适用于构建各种功能模块,如通过Servlet实现特定服务。客户端则主要依赖HTML进行内容展示,同时借助JavaScript增强交互性和动态效果。此外,现代Web开发还广泛使用各种框架和库,如Spring Boot、React和Vue.js,以提高开发效率和应用性能。 ... [详细]
  • Presto:高效即席查询引擎的深度解析与应用
    本文深入解析了Presto这一高效的即席查询引擎,详细探讨了其架构设计及其优缺点。Presto通过内存到内存的数据处理方式,显著提升了查询性能,相比传统的MapReduce查询,不仅减少了数据传输的延迟,还提高了查询的准确性和效率。然而,Presto在大规模数据处理和容错机制方面仍存在一定的局限性。本文还介绍了Presto在实际应用中的多种场景,展示了其在大数据分析领域的强大潜力。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • 本文详细介绍了如何安全地手动卸载Exchange Server 2003,以确保系统的稳定性和数据的完整性。根据微软官方支持文档(https://support.microsoft.com/kb833396/zh-cn),在进行卸载操作前,需要特别注意备份重要数据,并遵循一系列严格的步骤,以避免对现有网络环境造成不利影响。此外,文章还提供了详细的故障排除指南,帮助管理员在遇到问题时能够迅速解决,确保整个卸载过程顺利进行。 ... [详细]
  • Python 实战:异步爬虫(协程技术)与分布式爬虫(多进程应用)深入解析
    本文将深入探讨 Python 异步爬虫和分布式爬虫的技术细节,重点介绍协程技术和多进程应用在爬虫开发中的实际应用。通过对比多进程和协程的工作原理,帮助读者理解两者在性能和资源利用上的差异,从而在实际项目中做出更合适的选择。文章还将结合具体案例,展示如何高效地实现异步和分布式爬虫,以提升数据抓取的效率和稳定性。 ... [详细]
  • 本文探讨了Android系统中支持的图像格式及其在不同版本中的兼容性问题,重点涵盖了存储、HTTP传输、相机功能以及SparseArray的应用。文章详细分析了从Android 10 (API 29) 到Android 11 的存储规范变化,并讨论了这些变化对图像处理的影响。此外,还介绍了如何通过系统升级和代码优化来解决版本兼容性问题,以确保应用程序在不同Android版本中稳定运行。 ... [详细]
  • Spring框架中的面向切面编程(AOP)技术详解
    面向切面编程(AOP)是Spring框架中的关键技术之一,它通过将横切关注点从业务逻辑中分离出来,实现了代码的模块化和重用。AOP的核心思想是将程序运行过程中需要多次处理的功能(如日志记录、事务管理等)封装成独立的模块,即切面,并在特定的连接点(如方法调用)动态地应用这些切面。这种方式不仅提高了代码的可维护性和可读性,还简化了业务逻辑的实现。Spring AOP利用代理机制,在不修改原有代码的基础上,实现了对目标对象的增强。 ... [详细]
  • 掌握Android UI设计:利用ZoomControls实现图片缩放功能
    本文介绍了如何在Android应用中通过使用ZoomControls组件来实现图片的缩放功能。ZoomControls提供了一种简单且直观的方式,让用户可以通过点击放大和缩小按钮来调整图片的显示大小。文章详细讲解了ZoomControls的基本用法、布局设置以及与ImageView的结合使用方法,适合初学者快速掌握Android UI设计中的这一重要功能。 ... [详细]
  • 技术分享:深入解析GestureDetector手势识别机制
    技术分享:深入解析GestureDetector手势识别机制 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • 字节跳动深圳研发中心安全业务团队正在火热招募人才! ... [详细]
  • 构建高可用性Spark分布式集群:大数据环境下的最佳实践
    在构建高可用性的Spark分布式集群过程中,确保所有节点之间的无密码登录是至关重要的一步。通过在每个节点上生成SSH密钥对(使用 `ssh-keygen -t rsa` 命令并保持默认设置),可以实现这一目标。此外,还需将生成的公钥分发到所有节点的 `~/.ssh/authorized_keys` 文件中,以确保节点间的无缝通信。为了进一步提升集群的稳定性和性能,建议采用负载均衡和故障恢复机制,并定期进行系统监控和维护。 ... [详细]
  • Spring框架入门指南:专为新手打造的详细学习笔记
    Spring框架是Java Web开发中广泛应用的轻量级应用框架,以其卓越的功能和出色的性能赢得了广大开发者的青睐。本文为初学者提供了详尽的学习指南,涵盖基础概念、核心组件及实际应用案例,帮助新手快速掌握Spring框架的核心技术与实践技巧。 ... [详细]
author-avatar
手机用户2502900723
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有