热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

hdu1573非互素的中国剩余定理(疑似有错)

*大牛的思路:典型的中国剩余定理,但是这里是非互质情况下的中国剩余定理。解题思路:1.因为(a1,a2,a3,a4,….,ak)不一定互质,所以不能够直接用中国剩余定理。2

/*大牛的思路:
典型的中国剩余定理,但是这里是非互质情况下的中国剩余定理。
解题思路:
1.因为(a1,a2,a3,a4,….,ak)不一定互质,所以不能够直接用中国剩余定理。
2.x=r1+a1*k1,x=r2+a2*k2,所以有r1+a1*k1=r2+a2*k2,化简后得到 a1*k1=(r2-r1) mod(a2);
用扩展欧几里得可以得到最小的k1,所以x=r1+a1*k1+a1*a2/gcd(a1,a2),
就这样一直替换最后剩余一个同余方程。r1就是最后的解。
对于x=a1 mod b1,x= a2 mod b2,设x=a1+m*b1
所以b1*m=a2-a1 mod b2,利用欧几里德扩展定理求出最小的非负m,
那么x=a1+m*b1就已知,且x最小,如果无解,整个同余式组无解
同时,x+k*b1是所有满足x=a1 mod b1的解,而x+k‘*b2又是所有满足x=a2 mod b2的解
那么,将x+k*b1与x+k‘*b2合并,得到的式子就是x+k*lcm(b1,b2)
于是,上面两个式子可以用x‘=x mod lcm(b1,b2)来替代
最后,就只剩下一个式子了,求得的最小的x就是答案
对于一次同余式ax=b mod n,设d=gcd(a,n),则同余式有解的充要条件为d|b
假设d=a*x‘+n*y‘,则x0=b/d*x‘一定为方程组的一个解,且共有d个解,
(证明可以参考算法导论)最小正整数解为(x0%n/d+n/d)%(n/d)
*/
#include
#include
#include
#include
using namespace std;
typedef __int64 IntType;
IntType mod(IntType value,IntType modeNum)//求模运算,考虑负数
{
if(value <0)
value = value+((-value)/modeNum+1)*modeNum;
return value%modeNum;
}
IntType exgcd(IntType a,IntType b,IntType &x,IntType &y){//ax+by = 1
if( b == 0 ) {
x = 1;
y = 0;
return a;
}
else{
IntType x1,y1;
IntType d = exgcd ( b , mod(a,b) , x1 , y1 );
x = y1;
y= x1 - a / b * y1;
return d;
}
}
int main()
{
IntType n,m,temp;
IntType num[11],k;
IntType a[11],b[11];
IntType t;
scanf("%I64d",&t);
while(t--)
{
scanf("%I64d %I64d",&n,&m);
for(IntType i = 0; i {
scanf("%I64d",&a[i]);
}
for(IntType i = 0; i {
scanf("%I64d",&b[i]);
}
bool flag = true;
for(IntType i = 1; i {
IntType r = b[0] - b[i];
IntType k2,k1,c;
c = exgcd(a[i],a[0],k2,k1);
/*printf("gcd(%ld,%ld) = %ld\n",a[i],a[0],c);
printf("%ld * %ld = %ld (mod %d)\n",a[i],k2,c,a[0]);*/
if(mod(r,c) != 0)
{
flag = false;
break;
}
a[0] = a[0]/c*a[i];//a[0]变为lcm(a[0],a[i])
b[0] = mod((a[i]*k2*r/c)+b[i],a[0]);
/*printf("b[0] = %ld\n",b[0]);*/
}
if(flag == false||b[0] > n)
printf("0\n");
else
{
if(b[0] == 0)
printf("%I64d\n",(n-b[0])/a[0]);
else
printf("%I64d\n",(n-b[0])/a[0]+1);
}
}
return 0;
}

 

本文出自 “Qero” 博客,请务必保留此出处http://8590696.blog.51cto.com/8580696/1358917


推荐阅读
  • Docker基础入门与环境配置指南
    本文介绍了Docker——一款用Go语言编写的开源应用程序容器引擎。通过Docker,用户能够将应用及其依赖打包进容器内,实现高效、轻量级的虚拟化。容器之间采用沙箱机制,确保彼此隔离且资源消耗低。 ... [详细]
  • 使用 ModelAttribute 实现页面数据自动填充
    本文介绍了如何利用 Spring MVC 中的 ModelAttribute 注解,在页面跳转后自动填充表单数据。主要探讨了两种实现方法及其背后的原理。 ... [详细]
  • 本文列举了构建和运行 Struts2 应用程序所需的核心 JAR 文件,包括文件上传、日志记录、模板引擎等关键组件。 ... [详细]
  • egg实现登录鉴权(七):权限管理
    权限管理包含三部分:访问页面的权限,操作功能的权限和获取数据权限。页面权限:登录用户所属角色的可访问页面的权限功能权限:登录用户所属角色的可访问页面的操作权限数据权限:登录用户所属 ... [详细]
  • 本文介绍了用户界面(User Interface, UI)的基本概念,以及在iOS应用程序中UIView及其子类的重要性和使用方式。文章详细探讨了UIView如何作为用户交互的核心组件,以及它与其他UI控件和业务逻辑的关系。 ... [详细]
  • 本文由chszs撰写,详细介绍了Apache Mina框架的核心开发流程及自定义协议处理方法。文章涵盖从创建IoService实例到协议编解码的具体步骤,适合希望深入了解Mina框架应用的开发者。 ... [详细]
  • 本文介绍如何使用 Python 计算两个时间戳之间的时间差,并将其转换为毫秒。示例代码展示了如何通过 `time` 和 `datetime` 模块实现这一功能。 ... [详细]
  • 使用REM和媒体查询实现响应式布局
    本文介绍如何利用REM单位和媒体查询(Media Queries)来创建适应不同屏幕尺寸的网页布局。通过具体示例,展示在不同屏幕宽度下如何调整页面元素的样式。 ... [详细]
  • SPFA算法详解与应用
    当图中包含负权边时,传统的最短路径算法如Dijkstra不再适用,而Bellman-Ford算法虽然能解决问题,但其时间复杂度过高。SPFA算法作为一种改进的Bellman-Ford算法,能够在多数情况下提供更高效的解决方案。本文将详细介绍SPFA算法的原理、实现步骤及其应用场景。 ... [详细]
  • 本文详细对比了HashMap和HashTable在多线程环境下的安全性、对null值的支持、性能表现以及方法同步等方面的特点,帮助开发者根据具体需求选择合适的数据结构。 ... [详细]
  • 2023年1月28日网络安全热点
    涵盖最新的网络安全动态,包括OpenSSH和WordPress的安全更新、VirtualBox提权漏洞、以及谷歌推出的新证书验证机制等内容。 ... [详细]
  • 本文详细介绍了如何在PHP中使用Memcached进行数据缓存,包括服务器连接、数据操作、高级功能等。 ... [详细]
  • Windows环境下Oracle数据库迁移实践
    本文详细记录了一次在Windows操作系统下将Oracle数据库的控制文件、数据文件及在线日志文件迁移至外部存储的过程,旨在为后续的集群环境部署做好准备。 ... [详细]
  • 如何高效学习鸿蒙操作系统:开发者指南
    本文探讨了开发者如何更有效地学习鸿蒙操作系统,提供了来自行业专家的建议,包括系统化学习方法、职业规划建议以及具体的开发技巧。 ... [详细]
  • 本文探讨了线性表中元素的删除方法,包括顺序表和链表的不同实现策略,以及这些策略在实际应用中的性能分析。 ... [详细]
author-avatar
奶油晓生2502876643
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有