热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

halcon单通道图像转成3通道_如何用Python+OpenCV处理图像色彩?终于有人讲明白了...

导读:本文将着重介绍彩色图像的处理及彩色图像和灰度图像相互转换的相关内容。作者:方圆圆来源:华章科技01图像的颜色空间彩色图像比灰度图像拥

导读:本文将着重介绍彩色图像的处理及彩色图像和灰度图像相互转换的相关内容。

作者:方圆圆

来源:华章科技

01 图像的颜色空间

彩色图像比灰度图像拥有更丰富的信息,它的每个像素通常是由红(R)、绿(G)、蓝(B)3个分量来表示的,每个分量介于0~255之间。

图像中呈现的不同的颜色都是由R、G、B这3种颜色混合而成的。在OpenCV里面,彩色图像拥有3个颜色通道,但是通道的顺序是可以变换的,RGB、BRG、BGR、GBR、GRB都有可能。

在读取一幅图像的时候,我们对于图像的颜色通道排布并不清楚,因此需要先把图像的颜色通道固定下来,这就需要调用OpenCV的cvtColor()函数。

cvtColor()函数的功能是对图像进行颜色空间变换,原型如下:

dst=cv2.cvtColor(src, code )

参数说明:

  • src:输入图像即要进行颜色空间变换的原图像,可以是Mat类。
  • code:转换的代码或标识,即在此确定将什么制式的图片转换成什么制式的图片,后面会详细讲述。

函数输出进行颜色空间变换后存储图像。

通过调用cvtColor()函数,还可以将一幅彩色图像转换成灰度图像,示例代码见程序3-5,代码运行效果如图3.9所示。

af5d1ba9ebf2302307a5aff8b6f66482.png

▲彩色图像1.jpg

  • 程序3-5 彩色图像转灰度图像示例:color2gray.py

# -*- coding: UTF-8 -*-import numpy as npimport cv2#定义main()函数def main():   img = cv2.imread('1.jpg')   img2 = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)                                          #从彩色图像转化成灰度图像   cv2.imshow('img2.bmp ', img2)   cv2.waitKey(0)if __name__ == '__main__':   main()

346596c0c1650fa021f7e8e062d230b3.png

▲图3.9 color2gray.py程序运行结果

注意:cvtColor()函数还可以通过改变参数cv2.COLOR_RGB2BRG等改变图像颜色通道的排列顺序。另外也可以直接在读取图像函数imread时设置参数为0,直接将彩色图像读取为灰度图像,img = cv2.imread('1.jpg',0)。

02 彩色图像的通道分离和混合

灰度图像是单通道的,彩色图像拥有R、G、B三个颜色通道。因此在图像处理时,经常把颜色通道分离,单独处理一个通道的数组,然后再合并成一幅彩色图像。

在实际的代码编写中,只需要调用OpenCV中的split()和merge()函数就可以实现图像的通道分离和合并。

split()函数的功能是将多通道的矩阵分离成单通道矩阵,原型如下:

[,mv]=cv2.split (src)

参数说明:输入参数为要进行分离的图像矩阵,输出参数为一个Mat数组。

merge()函数的功能是将多个单通道图像合成一幅多通道图像,原型如下:

dst=cv2.merge([,dst] )

参数说明:输入参数可以是Mat数组,输出为合并后的图像矩阵。

03 彩色图像的通道分离和混合程序示例

输入一幅彩色图像,通过程序3-6将其分割成R、G、B这3个通道的图像并显示。在分割前需要先确定图像的颜色通道分布,因此先调用cvtColor()函数固定颜色通道。示例代码参见程序3-6,效果如图3.10所示。

  • 程序3-6 彩色图像通道分离示例:colorsplit.py

# -*- coding: UTF-8 -*-import numpy as npimport cv2#定义main()函数def main():   img = cv2.imread('1.jpg')       img2 = cv2.cvtColor(img,cv2.COLOR_BRG2RGB)   r,g,b = cv2.split(img2)   #img分离成三个单通道的图像   cv2.imshow("Red", r)   cv2.imshow("Green", g)   cv2.imshow("Blue", b)   cv2.waitKey(0)if __name__ == '__main__':   main()

87bf0af9743e02eeab771649ba3ab34c.png

▲图3.10 colorsplit.py程序运行结果

可以看出,在图像通道分离后,不同颜色通道的图像显示深浅不一,单通道的图像呈现该颜色通道的灰度信息。接下来把这3个颜色通道混合一下,在代码中加入一行代码:img3 = cv2.merge([b,g,r]);,这样img3又回到了原来输入的彩色图像样式,显示效果如图3.11所示。

bbf7dbce1b2f54834c5bfdc8b856fd7b.png

▲图3.11 图像三通道混合后的输出

04 彩色图像的二值化

图像的二值化是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果。彩色图像二值化最简单的步骤如下:

  1. 彩色图像转灰度。
  2. 图像阈值化处理,即像素值高于某阈值的像素赋值为255,反之为0。

其中,阈值的操作会调用OpenCV的threshold()函数。

threshold()函数声明如下:

ret, dst = cv2.threshold(src, thresh, maxval, type);

函数功能:实现图像固定阈值的二值化。

参数说明:

  • src:输入图,只能输入单通道图像,通常来说为灰度图。
  • dst:输出图。
  • thresh:阈值。
  • maxval:当像素值超过了阈值(或者小于阈值,根据type来决定)时所赋予的值。
  • type:二值化操作的类型,包含5种类型,即cv2.THRESH_BINARY、cv2.THRESH_BINARY_INV、cv2.THRESH_TRUNC、cv2.THRESH_TOZERO和cv2.THRESH_TOZERO_INV。

举例参考程序3-7。

  • 程序3-7 彩色图像二值化示例:colorthreshold.py

# -*- coding: UTF-8 -*-import numpy as npimport cv2#定义main()函数def main():   img = cv2.imread('1.jpg',0)   thresh1,dst =cv2.threshold(img,127,255,cv2.THRESH_BINARY)                                               #图像二值化   cv2.imshow("dst", dst)   cv2.waitKey(0)if __name__ == '__main__':   main()

如程序3-7所示,高于127的像素全部置为255,低于的全部置为0,得到如图3.12所示的输出结果。

f4c7856f608636f312043dc3b976cf52.png

▲图3.12 colorthreshold.py程序输出结果

05 彩色图像的遍历

灰度图像的遍历按照访问二维数组的方式得到坐标位置的像素。那对于彩色图像呢?彩色图像可以看出是3维数组,遍历方式参见程序3-8。

  • 程序3-8 遍历彩色图像示例:color1.py

# -*- coding: UTF-8 -*-import numpy as npimport cv2#定义main()函数def main():   img = cv2.imread('1.jpg')       height,width,n = img.shape #得到图片的宽高和维度   img2 = img.copy()  #复制一个跟img相同的新图片   #宽高两个维度遍历图片   for i in range(height):      for j in range(width):         img2[i, j][0] = 0 #将第一个通道内的元素重新赋值   cv2.imshow('img2.jpg', img2)   cv2.waitKey(0)if __name__ == '__main__':   main()

由于第一个通道里面的颜色信息全部变为了0,图像显示结果如图3.13所示。

a120a405155af5b3ae90fe78dd893b6d.png

▲图3.13 color1.py程序运行结果

在读取不同通道的图像像素值时,需要先确定图像的通道排列是RGB还是BRG。

06 彩色图像和灰度图像的转换

经过前面的学习,我们知道彩色图像转成灰度图像有3种路径:

  • imread读取图像的时候直接设置参数为0,彩色图像自动被读成灰度图像。
  • 调用cvtColor()函数,参数设置为cv2.COLOR_BGR2GRAY。
  • 调用split()函数,可以将一幅彩色图像分离成3个单通道的灰度图像。

那么灰度图像有没有可能转换成彩色图像呢?

我们知道灰度图像是单通道的,彩色图像是RGB 3这个颜色通道。那么是否可以人为地增加图像的通道,伪造出另外两个通道,而另外两个通道可以随机地赋值呢?程序3-9做出了尝试。

  • 程序3-9 增加图像通道示例:gray2color1.py

# -*- coding: UTF-8 -*-import numpy as npimport cv2#定义main()函数def main():   img = cv2.imread('gray1.jpg')       gray = np.zeros((512, 512, 3), np.uint8)  # 生成一个空彩色图像   height,width,n = img.shape   #图像像素级遍历   for i in range(height):      for j in range(width):         gray[i, j][0] = img[i, j][0]         gray[i, j][1] = 0         gray[i, j][2] = 0   cv2.imshow('gray.jpg', gray)   cv2.waitKey(0)=if __name__ == '__main__':   main()

上述程序新建了一个3通道的空的彩色图像,然后将读取的灰度图像放在新建的彩色图像的第一个通道,也就是B通道,其他两个通道赋值0,所以图像整体呈现蓝色,程序运行结果如图3.14所示。

519a1b05ec0bbbf3aa470dfbb798e0d6.png

▲图3.14 gray2color1.py程序运行结果

上述方法转换的图像颜色很单一。有没有更加智能的方法呢?在摄像技术不是很成熟的时期,人们给拍摄出来的黑白照片上色,发明了一种伪彩色图像技术。在OpenCV里面,可以用预定义好的Colormap(色度图)来给图片上色,示例代码参见程序3-10。

  • 程序3-10 伪彩色图像技术示例:gray2color2.py

# -*- coding: UTF-8 -*-import numpy as npimport cv2#定义main()函数def main():   img = cv2.imread('gray1.jpg')       im_color = cv2.applyColorMap(img, cv2.COLORMAP_JET)  #色度图上色   cv2.imshow("im_color.jpg", im_color)   cv2.waitKey(0)if __name__ == '__main__':   main()

程序运行结果如图3.15所示。伪彩色图像目前主要应用在对高度、压力、密度、湿度等描述上,彩色数据可视化。

afce5e69a9c311b8a6410652184f2124.png

▲图3.15 gray2color程序运行结果

关于作者:方圆圆,在人工智能技术领域有多年的工作经历和丰富的开发经验。

本文摘编自《人脸识别与美颜算法实战:基于 Python、机器学习与深度学习》,经出版方授权发布。

80d95f27abf83aff79d4b76485c2629e.png

延伸阅读《人脸识别与美颜算法实战》

推荐语:资深AI算法工程师结合60多个人脸图像案例介绍基于Python、机器学习及深度学习在人脸识别和美颜算法中的应用。



推荐阅读
  • 利用50行Python代码打造经典游戏,既是休闲娱乐,也是编程学习的利器
    Free Python Games 是一个适合学生和初学者的项目,它不仅提供了高度的组织性和灵活性,还极大地激发了用户的探索与理解能力。 ... [详细]
  • 深入浅出:Hadoop架构详解
    Hadoop作为大数据处理的核心技术,包含了一系列组件如HDFS(分布式文件系统)、YARN(资源管理框架)和MapReduce(并行计算模型)。本文将通过实例解析Hadoop的工作原理及其优势。 ... [详细]
  • 本文介绍了如何利用 `matplotlib` 库中的 `FuncAnimation` 类将 Python 中的动态图像保存为视频文件。通过详细解释 `FuncAnimation` 类的参数和方法,文章提供了多种实用技巧,帮助用户高效地生成高质量的动态图像视频。此外,还探讨了不同视频编码器的选择及其对输出文件质量的影响,为读者提供了全面的技术指导。 ... [详细]
  • 探索聚类分析中的K-Means与DBSCAN算法及其应用
    聚类分析是一种用于解决样本或特征分类问题的统计分析方法,也是数据挖掘领域的重要算法之一。本文主要探讨了K-Means和DBSCAN两种聚类算法的原理及其应用场景。K-Means算法通过迭代优化簇中心来实现数据点的划分,适用于球形分布的数据集;而DBSCAN算法则基于密度进行聚类,能够有效识别任意形状的簇,并且对噪声数据具有较好的鲁棒性。通过对这两种算法的对比分析,本文旨在为实际应用中选择合适的聚类方法提供参考。 ... [详细]
  • 本文介绍了一种算法,用于在一个给定的二叉树中找到一个节点,该节点的子树包含最大数量的值小于该节点的节点。如果存在多个符合条件的节点,可以选择任意一个。 ... [详细]
  • 本文档详细介绍了如何在 Python 中进行文件和目录的基本操作,包括文件的打开、关闭、读取、写入、复制以及文件和目录的创建、删除和重命名等。 ... [详细]
  • NumPy 的 random 模块提供了多种生成不同类型随机数的方法,包括均匀分布、正态分布等。本文详细介绍了 uniform、rand、random、randint 等函数的具体用法及其应用场景。 ... [详细]
  • 本文详细介绍了在Mac操作系统中使用Python连接MySQL数据库的方法,包括常见的错误处理及解决方案。 ... [详细]
  • 本文介绍如何使用Python编程语言合并字典中具有相同集合值的键,并提供两种实现方法。 ... [详细]
  • BeautifulSoup4 是一个功能强大的HTML和XML解析库,它能够帮助开发者轻松地从网页中提取信息。本文将介绍BeautifulSoup4的基本功能、安装方法、与其他解析工具的对比以及简单的使用示例。 ... [详细]
  • Python 中 filter、map 和 reduce 函数详解
    本文深入探讨了 Python 编程语言中 filter、map 和 reduce 函数的功能与用法,包括它们的基本语法、应用场景及代码示例,旨在帮助读者更好地理解和运用这些高阶函数。 ... [详细]
  • Python闭包深度解析与应用实例
    本文详细介绍了Python闭包的基本概念、必要条件及其实现方式,并通过具体示例说明闭包在提高代码复用性和维护性方面的作用。文章最后还探讨了闭包的内部机制及其在实际项目中的应用。 ... [详细]
  • 在Java编程中,初始化List集合有多种高效的方法。本文介绍了六种常见的技术,包括使用常规方式、Arrays.asList、Collections.addAll、Java 8的Stream API、双重大括号初始化以及使用List.of。每种方法都有其特定的应用场景和优缺点,开发者可以根据实际需求选择最合适的方式。例如,常规方式通过直接创建ArrayList对象并逐个添加元素,适用于需要动态修改列表的情况;而List.of则提供了一种简洁的不可变列表初始化方式,适合于固定数据集的场景。 ... [详细]
  • 在《ChartData类详解》一文中,我们将深入探讨 MPAndroidChart 中的 ChartData 类。本文将详细介绍如何设置图表颜色(Setting Colors)以及如何格式化数据值(Formatting Data Values),通过 ValueFormatter 的使用来提升图表的可读性和美观度。此外,我们还将介绍一些高级配置选项,帮助开发者更好地定制和优化图表展示效果。 ... [详细]
  • 本文介绍了如何在iOS平台上使用GLSL着色器将YV12格式的视频帧数据转换为RGB格式,并展示了转换后的图像效果。通过详细的技术实现步骤和代码示例,读者可以轻松掌握这一过程,适用于需要进行视频处理的应用开发。 ... [详细]
author-avatar
心雨1006600
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有