热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

hadoop中map到reduce的过程详解

对于Hadoop的MapReduce执行机制,主要分为两部分来处理数据,mapper和reducer阶段,这两个阶段中间有一个非常重要的shuffle过程,这个过程其实是mapreduce的核心部分,

对于Hadoop的MapReduce执行机制,主要分为两部分来处理数据,mapper和reducer阶段,这两个阶段中间有一个非常重要的shuffle过程,这个过程其实是mapreduce的核心部分,因为优化过程主要就是从shuffle处下手。系统将map输出作为输入传给reducer的过程(同时会排序)成为shuffle。shuffle是MapReduce的“心脏”,是奇迹发生的地方。

现就map到reduce的过程做一个大致的解释:

1、运行作业的客户端通过调用getSplits()计算分片,然后将他们发送到jobtracker;

2、jobtracker使用其存储位置信息来调度map任务从而在tasktracker上处理这些分片数据;

3、在tasktracker上,map任务把输入分片传给InputFormat的getRecordReader()方法来获得这个分片的RecordReader。RecordReader就像是记录上的迭代器,map任务通过调用mapper的run()方法用一个RecordReader来生成记录的键/值对,进而将该键/值对传给mapper的map方法作为输入。


4、根据自定义的mapper方法,将输入为键值对的数据处理为新的键值对数据,该数据为mapper方法的输出。

5、mapper方法的输出刚开始是写入map任务所有的环形内存缓冲区,待缓冲内容达到指定阈值(默认80%)时,会启动一个溢写的后台线程把内容从缓冲区写入磁盘(与此同时mapper的输出仍在写入缓冲区中,但如果在此期间缓冲区被填满,map会被阻塞直到写磁盘过程完成)。

5.1、在map输出写到缓冲区之前,会进行一个partition操作,即分区操作。MapReduce提供Partitioner接口,它的作用就是根据key或value及reduce的数量来决定当前的这对输出数据最终应该交由哪个reduce task处理。默认对key hash后再以reduce task数量取模。默认的取模方式只是为了平均reduce的处理能力,如果用户自己对Partitioner有需求,可以订制并设置到job上。

5.2、在从缓冲区写到磁盘的过程中,会实现一个排序的过程,即完成MapReduce的默认排序(若key为IntWritable,则排序为自然数的从小到大排序,若key为Text,则为字典顺序排序),这里的排序也是对序列化的字节做的排序 

5.3、在map输出写到磁盘的溢写过程中,可以加入一次combine操作,将此时统一缓冲区内的输出结果的key进行合并,这样可以减少内存写入磁盘的溢写IO操作。Combiner会优化MapReduce的中间结果,所以它在整个模型中会多次使用。那哪些场景才能使用Combiner呢?从这里分析,Combiner的输出是Reducer的输入,Combiner绝不能改变最终的计算结果。所以从我的想法来看,Combiner只应该用于那种Reduce的输入key/value与输出key/value类型完全一致,且不影响最终结果的场景。比如累加,最大值等。Combiner的使用一定得慎重,如果用好,它对job执行效率有帮助,反之会影响reduce的最终结果。 

6、待全部的mapper输出均写到磁盘后,map会把这多个临时文件合并,即做merge操作,注意,这里的merge操作只是简单的合并,如果没有在该处设置Combiner,是不会对相同key进行压缩的,所以可能会有相同的key出现。merge操作就是对于同样的key,其value变为list,把多个value放在list中。这种key/value的形式就是reduce的输入数据格式。

至此,map端的所有工作都已结束,最终生成的这个文件也存放在TaskTracker够得着的某个本地目录内。每个reduce task不断地通过RPC从JobTracker那里获取map task是否完成的信息,如果reduce task得到通知,获知某台TaskTracker上的map task执行完成,Shuffle的后半段过程开始启动。 


7、reducer通过HTTP方式得到输出文件的分区。Reduce进程启动一些数据copy线程(Fetcher),通过HTTP方式请求map task所在的TaskTracker获取map task的输出文件,并行地获取map输出。因为map task早已结束,这些文件就归TaskTracker管理在本地磁盘中。 

8、合并操作:这里的merge如map端的merge动作,只是数组中存放的是不同map端copy来的数值。Copy过来的数据会先放入内存缓冲区中,这里的缓冲区大小要比map端的更为灵活,它基于JVM的heap size设置,因为Shuffle阶段Reducer不运行,所以应该把绝大部分的内存都给Shuffle用。

这里需要强调的是,merge有三种形式:1)内存到内存  2)内存到磁盘  3)磁盘到磁盘。默认情况下第一种形式不启用,让人比较困惑,是吧。当内存中的数据量到达一定阈值,就启动内存到磁盘的merge。与map 端类似,这也是溢写的过程,这个过程中如果你设置有Combiner,也是会启用的,然后在磁盘中生成了众多的溢写文件。

9、reducer会一直进行合并merge操作,直到所有的map的输出结果都被合并完毕为止第二种merge方式一直在运行,直到没有map端的数据时才结束,然后启动第三种磁盘到磁盘的merge方式生成最终的那个文件。 

10、 Reducer的输入文件。不断地merge后,最后会生成一个“最终文件”。为什么加引号?因为这个文件可能存在于磁盘上,也可能存在于内存中。对我们来说,当然希望它存放于内存中,直接作为Reducer的输入,但默认情况下,这个文件是存放于磁盘中的。当Reducer的输入文件已定,整个Shuffle才最终结束。

11、合并完之后,reducer会直接把数据输入reduce函数,而不会把最后合并的一个大文件再次写入磁盘。最后的合并可以来自北村和磁盘片段。

12、在reduce阶段中,对已排序输出的每个键调用reduce函数。此阶段的输出直接写到输出文件系统,一般为HDFS。如果采用HDFS,由于tasktracker节点也运行数据节点,所以第一个块副本将被写到本地磁盘。


 在Hadoop这样的集群环境中,大部分map task与reduce task的执行是在不同的节点上。当然很多情况下Reduce执行时需要跨节点去拉取其它节点上的map task结果。如果集群正在运行的job有很多,那么task的正常执行对集群内部的网络资源消耗会很严重。这种网络消耗是正常的,我们不能限制,能做的就是最大化地减少不必要的消耗。还有在节点内,相比于内存,磁盘IO对job完成时间的影响也是可观的。从最基本的要求来说,我们对Shuffle过程的期望可以有: 

  • 完整地从map task端拉取数据到reduce 端。
  • 在跨节点拉取数据时,尽可能地减少对带宽的不必要消耗。
  • 减少磁盘IO对task执行的影响。


推荐阅读
  • 浅析python实现布隆过滤器及Redis中的缓存穿透原理_python
    本文带你了解了位图的实现,布隆过滤器的原理及Python中的使用,以及布隆过滤器如何应对Redis中的缓存穿透,相信你对布隆过滤 ... [详细]
  • 本文详细介绍了 PHP 中对象的生命周期、内存管理和魔术方法的使用,包括对象的自动销毁、析构函数的作用以及各种魔术方法的具体应用场景。 ... [详细]
  • 属性类 `Properties` 是 `Hashtable` 类的子类,用于存储键值对形式的数据。该类在 Java 中广泛应用于配置文件的读取与写入,支持字符串类型的键和值。通过 `Properties` 类,开发者可以方便地进行配置信息的管理,确保应用程序的灵活性和可维护性。此外,`Properties` 类还提供了加载和保存属性文件的方法,使其在实际开发中具有较高的实用价值。 ... [详细]
  • 本文详细介绍了在 CentOS 7 系统中配置 fstab 文件以实现开机自动挂载 NFS 共享目录的方法,并解决了常见的配置失败问题。 ... [详细]
  • 如何在Java中使用DButils类
    这期内容当中小编将会给大家带来有关如何在Java中使用DButils类,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。D ... [详细]
  • 在《Cocos2d-x学习笔记:基础概念解析与内存管理机制深入探讨》中,详细介绍了Cocos2d-x的基础概念,并深入分析了其内存管理机制。特别是针对Boost库引入的智能指针管理方法进行了详细的讲解,例如在处理鱼的运动过程中,可以通过编写自定义函数来动态计算角度变化,利用CallFunc回调机制实现高效的游戏逻辑控制。此外,文章还探讨了如何通过智能指针优化资源管理和避免内存泄漏,为开发者提供了实用的编程技巧和最佳实践。 ... [详细]
  • 在处理大规模数据数组时,优化分页组件对于提高页面加载速度和用户体验至关重要。本文探讨了如何通过高效的分页策略,减少数据渲染的负担,提升应用性能。具体方法包括懒加载、虚拟滚动和数据预取等技术,这些技术能够显著降低内存占用和提升响应速度。通过实际案例分析,展示了这些优化措施的有效性和可行性。 ... [详细]
  • 本文详细解析了使用C++实现的键盘输入记录程序的源代码,该程序在Windows应用程序开发中具有很高的实用价值。键盘记录功能不仅在远程控制软件中广泛应用,还为开发者提供了强大的调试和监控工具。通过具体实例,本文深入探讨了C++键盘记录程序的设计与实现,适合需要相关技术的开发者参考。 ... [详细]
  • 本文深入探讨了NoSQL数据库的四大主要类型:键值对存储、文档存储、列式存储和图数据库。NoSQL(Not Only SQL)是指一系列非关系型数据库系统,它们不依赖于固定模式的数据存储方式,能够灵活处理大规模、高并发的数据需求。键值对存储适用于简单的数据结构;文档存储支持复杂的数据对象;列式存储优化了大数据量的读写性能;而图数据库则擅长处理复杂的关系网络。每种类型的NoSQL数据库都有其独特的优势和应用场景,本文将详细分析它们的特点及应用实例。 ... [详细]
  • 使用Maven JAR插件将单个或多个文件及其依赖项合并为一个可引用的JAR包
    本文介绍了如何利用Maven中的maven-assembly-plugin插件将单个或多个Java文件及其依赖项打包成一个可引用的JAR文件。首先,需要创建一个新的Maven项目,并将待打包的Java文件复制到该项目中。通过配置maven-assembly-plugin,可以实现将所有文件及其依赖项合并为一个独立的JAR包,方便在其他项目中引用和使用。此外,该方法还支持自定义装配描述符,以满足不同场景下的需求。 ... [详细]
  • 在安装并配置了Elasticsearch后,我在尝试通过GET /_nodes请求获取节点信息时遇到了问题,收到了错误消息。为了确保请求的正确性和安全性,我需要进一步排查配置和网络设置,以确保Elasticsearch集群能够正常响应。此外,还需要检查安全设置,如防火墙规则和认证机制,以防止未经授权的访问。 ... [详细]
  • 本文深入解析了JDK 8中HashMap的源代码,重点探讨了put方法的工作机制及其内部参数的设定原理。HashMap允许键和值为null,但键为null的情况只能出现一次,因为null键在内部通过索引0进行存储。文章详细分析了capacity(容量)、size(大小)、loadFactor(加载因子)以及红黑树转换阈值的设定原则,帮助读者更好地理解HashMap的高效实现和性能优化策略。 ... [详细]
  • Keepalived 提供了多种强大且灵活的后端健康检查机制,包括 HTTP_GET、SSL_GET、TCP_CHECK、SMTP_CHECK 和 MISC_CHECK 等多种检测方法。这些健康检查功能确保了高可用性环境中的服务稳定性和可靠性。通过合理配置这些检查方式,可以有效监测后端服务器的状态,及时发现并处理故障,从而提高系统的整体性能和可用性。 ... [详细]
  • 本文详细介绍了 Java 中遍历 Map 对象的几种常见方法及其应用场景。首先,通过 `entrySet` 方法结合增强型 for 循环进行遍历是最常用的方式,适用于需要同时访问键和值的场景。此外,还探讨了使用 `keySet` 和 `values` 方法分别遍历键和值的技巧,以及使用迭代器(Iterator)进行更灵活的遍历操作。每种方法都附有示例代码和具体的应用实例,帮助开发者更好地理解和选择合适的遍历策略。 ... [详细]
  • 在PHP中实现腾讯云接口签名,以完成人脸核身功能的对接与签名配置时,需要注意将文档中的POST请求改为GET请求。具体步骤包括:使用你的`secretKey`生成签名字符串`$srcStr`,格式为`GET faceid.tencentcloudapi.com?`,确保参数正确拼接,避免因请求方法错误导致的签名问题。此外,还需关注API的其他参数要求,确保请求的完整性和安全性。 ... [详细]
author-avatar
瓶子2502854683
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有