热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

glove中文词向量_关于词向量的面试题,你想知道的都在这里了

如果觉得还不错,帮忙点个赞,鞠躬感谢微信公众号:NLP从入门到放弃Github:https:github.comDA-southampto
7dab78a61b36ce4d431f405946ce3761.png

如果觉得还不错,帮忙点个赞,鞠躬感谢

微信公众号:NLP从入门到放弃

Github: https://github.com/DA-southampton/NLP_ability

主要包含:Word2vec/Fasttext/Glove/Elmo

  1. 有没有使用自己的数据训练过Word2vec,详细说一下过程。包括但是不限于:语料如何获取,清理以及语料的大小,超参数的选择及其原因,词表以及维度大小,训练时长等等细节点。
  2. Word2vec模型是如何获得词向量的?聊一聊你对词嵌入的理解?如何理解分布式假设?
  3. 如何评估训练出来的词向量的好坏
  4. Word2vec模型如何做到增量训练
  5. 大致聊一下 word2vec这个模型的细节,包括但不限于:两种模型以及两种优化方法(大致聊一下就可以,下面会详细问)
  6. 解释一下 hierarchical softmax 的流程(CBOW and Skip-gram)
  7. 基于6,可以展开问一下模型如何获取输入层,有没有隐层,输出层是什么情况。
  8. 基于6,可以展开问输出层为何选择霍夫曼树,它有什么优点,为何不选择其他的二叉树
  9. 基于6,可以问该模型的复杂度是多少,目标函数分别是什么,如何做到更新梯度(尤其是如何更新输入向量的梯度)
  10. 基于6,可以展开问一下 hierarchical softmax 这个模型 有什么缺点
  11. 聊一下负采样模型优点(为什么使用负采样技术)
  12. 如何对输入进行负采样(负采样的具体实施细节是什么)
  13. 负采样模型对应的目标函数分别是什么(CBOW and Skip-gram)
  14. CBOW和skip-gram相较而言,彼此相对适合哪些场景
  15. 有没有使用Word2vec计算过句子的相似度,效果如何,有什么细节可以分享出来
  16. 详细聊一下Glove细节,它是如何进行训练的?有什么优点?什么场景下适合使用?与Word2vec相比,有什么区别(比如损失函数)?
  17. 详细聊一下Fasttext细节,每一层都代表了什么?它与Wod2vec的区别在哪里?什么情况下适合使用Fasttext这个模型?
  18. ELMO的原理是什么?以及它的两个阶段分别如何应用?(第一阶段如何预训练,第二阶段如何在下游任务使用)
  19. ELMO的损失函数是什么?它是一个双向语言模型吗?为什么?
  20. ELMO的优缺点分别是什么?为什么可以做到一词多义的效果?



推荐阅读
author-avatar
手机用户2502869023
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有