热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

deeplearningtutorial学习笔记

DeeplearningTutorialcs231n讲义,作业whydeepisbetter?ChoosingProperLossdropoutdr

Deep learning Tutorial

cs231n 讲义,作业

why deep is better?

Choosing Proper Loss

dropout
  • dropout is kind of ensembel

 

 Why CNN for Image

卷积核处理后的尺寸:Feature Map 的尺寸等于(input_size+ 2 * padding_size-filter_size) / stride +1

cross-validation strategy

coarse -> fine cross-validation in stages

  • first stage: only a few epochs to get rough idea of what params work

  • second stage: longer running time,finer search.. repeat as necessary

  • tip for detecting explosions in the solver: if the cost is ever > 3*original cost ,break out early

relu

 adagrad, adam

 

 

# Adam
m = beta1*m + (1-beta1)*dx      # update first moment
v = beta2*v + (1-beta2)*(dx**2) # update second moment
x += -learning_rate * m / (np.sqrt(v) + 1e-7) 

# Adam
m,v =  # ... initialize caches to zeros
for t in  xrange(0, big_number):
    dx = # ... evaluate gradient
    m = beta1 * m + (1-beta1) * dx
    v = beta2 * v + (1-beta2) * (dx**2)
    m /= 1-beta1**t     # correct bias
    v /= 1-beta2**t     # correct bias
    x += -learning_rate * m / ( np.sqrt(v) + 1e-7)

# Adagrad update
cache += dx**2
x += -learning_rate * dx / ( np.sqrt(cache) + 1e-7 )

# RMSProp
cache = decay_rate * cache + ( 1 - decay_rate) * (dx**2)
x += -learning_rate * dx / ( np.sqrt(cache) + 1e-7 )

 

batch normalization

RNN

 


推荐阅读
author-avatar
zhihong520珠珠_448
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有