热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

day9为什么会有GIL锁

一、前言我的机器有4核,代表着同一时间,可以干4个任务。如果单核cpu的话,我启动10个线程,我看上去也是并发的࿰

一、前言

  我的机器有4核,代表着同一时间,可以干4个任务。如果单核cpu的话,我启动10个线程,我看上去也是并发的,因为是执行了上下文的切换,让我看上去是并发的。但是单核永远肯定时串行的,它肯定是串行的,cpu真正执行的时候,因为一会执行1,一会执行2.。。。。正常的线程就是这个样子的。

  但是,在python中,无论你有多少核,永远都是假象。无论你是4核,8核,还是16核.......不好意思,同一时间执行的线程只有一个(线程),它就是这个样子的。这个是python的一个开发时候,设计的一个缺陷,所以说python中的线程是假线程。

二、全局解释器锁(GIL)

2.1、英文解释

In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython’s memory management is not thread-safe. (However, since the GIL exists, other features have grown to depend on the guarantees that it enforces.)

上面的核心意思就是:

  无论你启多少个线程,你有多少个cpu, Python在执行的时候会淡定的在同一时刻只允许一个线程运行。

2.2、GIL存在的意义?

  因为python的线程是调用操作系统的原生线程,这个原生线程就是C语言写的原生线程。因为python是用C写的,启动的时候就是调用的C语言的接口。因为启动的C语言的远程线程,那它要调这个线程去执行任务就必须知道上下文,所以python要去调C语言的接口的线程,必须要把这个上限问关系传给python,那就变成了一个我在加减的时候要让程序串行才能一次计算。就是先让线程1,再让线程2.......

  每个线程在执行的过程中,python解释器是控制不了的,因为是调的C语言的接口,超出了python的控制范围,python的控制范围是只在python解释器这一层,所以python控制不了C接口,它只能等结果。所以它不能控制让哪个线程先执行,因为是一块调用的,只要一执行,就是等结果,这个时候4个线程独自执行,所以结果就不一定正确了。有了GIL,就可以在同一时间只有一个线程能够工作。虽然这4个线程都启动了,但是同一时间我只能让一个线程拿到这个数据。其他的几个都干等。python启动的4个线程确确实实落到了这4个cpu上,但是为了避免出错。这也是Cpython的一个缺陷,其他语言没有,仅仅只是Cpython有。

2.3、GIL锁关系图

GIL(全局解释器锁)是加在python解释器里面的,效果如图:

为什么GIL锁要加在python解释器这一层,而却不加在其他地方?

  因为你python调用的所有线程都是原生线程。原生线程是通过C语言提供原生接口,相当于C语言的一个函数。你一调它,你就控制不了了它了,就必须等它给你返回结果。只要已通过python虚拟机,再往下就不受python控制了,就是C语言自己控制了。你加在python虚拟机以下,你是加不上去的。同一时间,只有一个线程穿过这个锁去真正执行。其他的线程,只能在python虚拟机这边等待。

三、总结

  首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL归结为Python语言的缺陷。所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL。

  这篇文章透彻的剖析了GIL对python多线程的影响,强烈推荐看一下:猛击这里

转:https://www.cnblogs.com/zhangqigao/articles/7258364.html



推荐阅读
  • MATLAB字典学习工具箱SPAMS:稀疏与字典学习的详细介绍、配置及应用实例
    SPAMS(Sparse Modeling Software)是一个强大的开源优化工具箱,专为解决多种稀疏估计问题而设计。该工具箱基于MATLAB,提供了丰富的算法和函数,适用于字典学习、信号处理和机器学习等领域。本文将详细介绍SPAMS的配置方法、核心功能及其在实际应用中的典型案例,帮助用户更好地理解和使用这一工具箱。 ... [详细]
  • Java中高级工程师面试必备:JVM核心知识点全面解析
    对于软件开发人员而言,随着技术框架的不断演进和成熟,许多高级功能已经被高度封装,使得初级开发者只需掌握基本用法即可迅速完成项目。然而,对于中高级工程师而言,深入了解Java虚拟机(JVM)的核心知识点是必不可少的。这不仅有助于优化性能和解决复杂问题,还能在面试中脱颖而出。本文将全面解析JVM的关键概念和技术细节,帮助读者全面提升技术水平。 ... [详细]
  • Linux CentOS 7 安装PostgreSQL 9.5.17 (源码编译)
    近日需要将PostgreSQL数据库从Windows中迁移到Linux中,LinuxCentOS7安装PostgreSQL9.5.17安装过程特此记录。安装环境&#x ... [详细]
  • 为了在Hadoop 2.7.2中实现对Snappy压缩和解压功能的原生支持,本文详细介绍了如何重新编译Hadoop源代码,并优化其Native编译过程。通过这一优化,可以显著提升数据处理的效率和性能。此外,还探讨了编译过程中可能遇到的问题及其解决方案,为用户提供了一套完整的操作指南。 ... [详细]
  • C++ 开发实战:实用技巧与经验分享
    C++ 开发实战:实用技巧与经验分享 ... [详细]
  • 本文探讨了资源访问的学习路径与方法,旨在帮助学习者更高效地获取和利用各类资源。通过分析不同资源的特点和应用场景,提出了多种实用的学习策略和技术手段,为学习者提供了系统的指导和建议。 ... [详细]
  • 在List和Set集合中存储Object类型的数据元素 ... [详细]
  • 本文深入探讨了Java多线程环境下的同步机制及其应用,重点介绍了`synchronized`关键字的使用方法和原理。`synchronized`关键字主要用于确保多个线程在访问共享资源时的互斥性和原子性。通过具体示例,如在一个类中使用`synchronized`修饰方法,展示了如何实现线程安全的代码块。此外,文章还讨论了`ReentrantLock`等其他同步工具的优缺点,并提供了实际应用场景中的最佳实践。 ... [详细]
  • 在 Linux 环境下,多线程编程是实现高效并发处理的重要技术。本文通过具体的实战案例,详细分析了多线程编程的关键技术和常见问题。文章首先介绍了多线程的基本概念和创建方法,然后通过实例代码展示了如何使用 pthreads 库进行线程同步和通信。此外,还探讨了多线程程序中的性能优化技巧和调试方法,为开发者提供了宝贵的实践经验。 ... [详细]
  • Python全局解释器锁(GIL)机制详解
    在Python中,线程是操作系统级别的原生线程。为了确保多线程环境下的内存安全,Python虚拟机引入了全局解释器锁(Global Interpreter Lock,简称GIL)。GIL是一种互斥锁,用于保护对解释器状态的访问,防止多个线程同时执行字节码。尽管GIL有助于简化内存管理,但它也限制了多核处理器上多线程程序的并行性能。本文将深入探讨GIL的工作原理及其对Python多线程编程的影响。 ... [详细]
  • 技术日志:使用 Ruby 爬虫抓取拉勾网职位数据并生成词云分析报告
    技术日志:使用 Ruby 爬虫抓取拉勾网职位数据并生成词云分析报告 ... [详细]
  • 将JavaScript文件嵌入HTML文档是Web开发中的基本操作。常见的方法是通过在HTML文件中使用``标签来引用外部的.js文件。这种方法不仅保持了代码的整洁性,还便于管理和维护。此外,还可以利用模块化脚本和异步加载技术进一步提升页面性能。 ... [详细]
  • 并发编程入门:初探多任务处理技术
    并发编程入门:探索多任务处理技术并发编程是指在单个处理器上高效地管理多个任务的执行过程。其核心在于通过合理分配和协调任务,提高系统的整体性能。主要应用场景包括:1) 将复杂任务分解为多个子任务,并分配给不同的线程,实现并行处理;2) 通过同步机制确保线程间协调一致,避免资源竞争和数据不一致问题。此外,理解并发编程还涉及锁机制、线程池和异步编程等关键技术。 ... [详细]
  • 在Linux环境下编译安装Heartbeat时,常遇到依赖库缺失的问题。为确保顺利安装,建议预先通过yum安装必要的开发库,如glib2-devel、libtool-ltdl-devel、net-snmp-devel、bzip2-devel和ncurses-devel等。这些库是编译过程中不可或缺的组件,能够有效避免编译错误,确保Heartbeat的稳定运行。 ... [详细]
  • ESP32 IRAM 内存优化策略与实践总结
    本文总结了针对ESP32 IRAM内存溢出问题的优化策略与实践经验。通过详细分析ESP32的内存结构和IRAM分配机制,提出了一系列有效的解决方案,包括代码优化、内存管理技巧和编译器配置调整,旨在帮助开发者有效解决`.espressif/tools/xtensa-esp32-elf/esp-2`等类似错误,提升系统性能和稳定性。 ... [详细]
author-avatar
华东师大中北文艺部
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有