热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

sklearn数据集库中的常用数据集类型介绍

本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。

datasets数据

​ 分享一些学习到的知识

​ sklearn的数据集库datasets提供很多不同的数据集,主要包含以下几大类:


  1. 玩具数据集


  2. 真实世界中的数据集


  3. 样本生成器


  4. 样本图片


  5. svmlight或libsvm格式的数据


  6. 从openml.org下载的数据


  7. 从外部加载的数据

    用的比较多的就是1和3,这里进行主要介绍,其他的会进行简单介绍,但是不建议使用。



玩具数据集

​ scikit-learn 内置有一些小型标准数据集,不需要从某个外部网站下载任何文件,用datasets.load_xx()加载。

(一) 波士顿房价

​ 统计了波士顿506处房屋的13种不同特征( 包含城镇犯罪率、一氧化氮浓度、住宅平均房间数、到中心区域的加权距离以及自住房平均房价等 )以及房屋的价格,适用于回归任务。

img

from sklearn import datasets # 导入库
boston = datasets.load_boston() # 导入波士顿房价数据
print(boston.keys()) # 查看键(属性) ['data','target','feature_names','DESCR', 'filename']
print(boston.data.shape,boston.target.shape) # 查看数据的形状 (506, 13) (506,)
print(boston.feature_names) # 查看有哪些特征 这里共13种
print(boston.DESCR) # described 描述这个数据集的信息
print(boston.filename) # 文件路径

(二) 鸢尾花

​ 这个数据集包含了150个鸢尾花样本,对应3种鸢尾花,各50个样本,以及它们各自对应的4种关于花外形的数据 ,适用于分类任务。

from sklearn import datasets # 导入库
iris = datasets.load_iris() # 导入鸢尾花数据
print(iris.data.shape,iris.target.shape) # (150, 4) (150,)
print(iris.feature_names) # [花萼长,花萼宽,花瓣长,花瓣宽]

​ 还可以在sklearn\datasets_base.py文件中查看信息:3类,每类50个,共150个样本,维度(特征)为4,特征的数值是真实的,并且都是正数。

image-20200130230510572

​ 其他数据集大同小异,节省大家时间,下面只做简单介绍。

(三) 糖尿病

​ 主要包括442个实例,每个实例10个属性值,分别是:Age(年龄)、性别(Sex)、Body mass index(体质指数)、Average Blood Pressure(平均血压)、S1~S6一年后疾病级数指标,Target为一年后患疾病的定量指标, 适用于回归任务。

from sklearn import datasets # 导入库
diabetes = datasets.load_diabetes() # 导入糖尿病数据

(四) 手写数字

​ 共有1797个样本,每个样本有64的元素,对应到一个8×8像素点组成的矩阵,每一个值是其灰度值, target值是0-9,适用于分类任务。

from sklearn import datasets # 导入库
digits = datasets.load_digits() # 导入手写数字数据

(五) 体能训练

​ 兰纳胡德提供的体能训练数据,data和target都是20×3,data的特征包括Chins, Situps and Jumps.(引体向上 仰卧起坐 跳跃),target的三维分别是Weight, Waist and Pulse.(体重 腰围 脉搏),适用于回归问题,用的少。

(六) 红酒

​ 共178个样本,代表了红酒的三个档次(分别有59,71,48个样本),以及与之对应的13维的属性数据,适用于分类任务。

from sklearn import datasets # 导入库
wine = datasets.load_wine() # 导入红酒数据

(七) 威斯康辛州乳腺癌

​ 包含了威斯康辛州记录的569个病人的乳腺癌恶性/良性(1/0)类别型数据,以及与之对应的30个维度的生理指标数据,适用于二分类问题。

from sklearn import datasets # 导入库
cancer = datasets.load_breast_cancer() # 导入乳腺癌数据

真实世界中的数据集

​ scikit-learn 提供加载较大数据集的工具,并在必要时可以在线下载这些数据集,用datasets.fetch_xx()加载。


















































调用描述
fetch_olivetti_faces()Olivetti 脸部图片数据集
fetch_20newsgroups()用于文本分类、文本挖据和信息检索研究的国际标准数据集之一。数据集收集了大约20,000左右的新闻组文档,均匀分为20个不同主题的新闻组集合。返回一个可以被文本特征提取器
fetch_20newsgroups_vectorized()这是上面这个文本数据的向量化后的数据,返回一个已提取特征的文本序列,即不需要使用特征提取器
fetch_lfw_people()打好标签的人脸数据集
fetch_lfw_pairs()该任务称为人脸验证:给定一对两张图片,二分类器必须预测这两个图片是否来自同一个人
fetch_covtype()森林植被类型,总计581012个样本,每个样本由54个维度表示(12个属性,其中2个分别是onehot4维和onehot40维),以及target表示植被类型1-7,所有属性值均为number,详情可调用fetch_covtype()[‘DESCR’]了解每个属性的具体含义
fetch_rcv1()路透社新闻语料数据集
fetch_kddcup99()KDD竞赛在1999年举行时采用的数据集,KDD99数据集仍然是网络入侵检测领域的事实Benckmark,为基于计算智能的网络入侵检测研究奠定基础,包含41项特征
fetch_california_housing()加利福尼亚的房价数据,总计20640个样本,每个样本8个属性表示,以及房价作为target,所有属性值均为number,详情可调用fetch_california_housing()[‘DESCR’]了解每个属性的具体含义
fetch_species_distributions()物种分布数据集

样本生成器


(一) 簇

from sklearn import datasets
centers = [[2,2],[8,2],[2,8],[8,8]]
x, y = datasets.make_blobs(n_samples=1000, n_features=2, centers=4,cluster_std=1)

n_samples:样本数

n_features:特征数(维度)

centers:中心数,也可以是中心的坐标

cluster_std:簇的方差

(二) 同心圆

x, y = datasets.make_circles(n_samples=5000, noise=0.04, factor=0.7)

noise:噪声

factor:内圆与外圆的距离 为1的时候最小

(三) 月牙

x, y = datasets.make_moons(n_samples=3000, noise=0.05)

(四) 分类

x, y =datasets.make_classification(n_classes=4, n_samples=1000, n_features=2, n_informative=2 , n_redundant=0, n_clusters_per_class=1,n_repeated=0, random_state=22)

n_classes:类的数目

n_informative:有效的特征数

n_redundant:冗余特征数 有效特征数的线性组合

n_repeated:有效特征数和冗余特征数的有效组合

n_informative + n_redundant + n_repeated <= n_features

n_clusters_per_class:每一类的簇数

n_classes * n_clusters_per_class <= 2**n_informative

样本图片

​ scikit 在通过图片的作者共同授权下嵌入了几个样本 JPEG 图片。这些图像为了方便用户对 test algorithms (测试算法)和 pipeline on 2D data (二维数据管道)进行测试,用datasets.load_sample_image()加载。

from sklearn import datasets
import matplotlib.pyplot as plt
img = datasets.load_sample_image('flower.jpg')
print(img.shape) # (427, 640, 3)
print(img.dtype) # uint8
plt.imshow(img)
plt.show()

image-20200131141840114

svmlight或libsvm格式的数据

可以加载svmlight / libsvm格式的数据集。

from sklearn.datasets import load_svmlight_file,load_svmlight_files
# 加载单个文件
X_train, y_train = load_svmlight_file("/path/to/train_dataset.txt")
# 加载多个文件
X_train, y_train, X_test, y_test = load_svmlight_files(("/path/to/train_dataset.txt", "/path/to/test_dataset.txt"))

​ svmlight / libsvm格式的公共数据集

从openml.org下载的数据

​ openml.org 是一个用于机器学习数据和实验的公共存储库,它允许每个人上传开放的数据集,可以通过sklearn.datasets.fetch_openml()函数来从openml.org下载数据集。

​ 例如,下载gene expressions in mice brains(老鼠大脑中的基因表达)数据集:

from sklearn.datasets import fetch_openml
mice = fetch_openml(name='miceprotein', version=4)
print(mice.DESCR) # 查看详情

从外部加载的数据

​ 建议除了玩具数据集和生成数据集以外,都在网上下载后用pandas导入。

kaggle:https://www.kaggle.com

天池:https://tianchi.aliyun.com/dataset

搜狗实验室:http://www.sogou.com/labs/resource/list_pingce.php

DC竞赛:https://www.pkbigdata.com/common/cmptIndex.html

DF竞赛:https://www.datafountain.cn/datasets

​ 例如,导入iris文件:

import pandas as pd
import seaborn as sns # 基于matplotlib和pandas的画图库
import matplotlib.pyplot as plt
data = pd.read_csv('G:\iris.csv', encoding='gbk') # 我把数据集列名改成了中文 所以用gbk解码
sns.relplot(x='花萼长', y='花瓣长', hue='类别',data=data) # seaborn库这里不做过多介绍
plt.rcParams['font.sans-serif'] = ['SimHei'] # 步骤一(替换sans-serif字体)
# plt.rcParams['axes.unicode_minus'] = False # 步骤二(解决坐标轴负数的负号显示问题)
plt.show()

image-20200131152230807

总结

​ sklearn的数据集datasets库中,我们一般使用玩具数据集和样本生成器比较多,其他数据建议外部导入。

​ 下一期向大家介绍sklearn中关于数据预处理的一些常用操作。

来源:https://www.bilibili.com/video/BV1H7411874E?p=2


推荐阅读
  • AI炼金术:KNN分类器的构建与应用
    本文介绍了如何使用Python及其相关库(如NumPy、scikit-learn和matplotlib)构建KNN分类器模型。通过详细的数据准备、模型训练及新样本预测的过程,展示KNN算法的实际操作步骤。 ... [详细]
  • 深入解析WebP图片格式及其应用
    随着互联网技术的发展,无论是PC端还是移动端,图片数据流量占据了很大比重。尤其在高分辨率屏幕普及的背景下,如何在保证图片质量的同时减少文件大小,成为了亟待解决的问题。本文将详细介绍Google推出的WebP图片格式,探讨其在实际项目中的应用及优化策略。 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  •     目标检测是计算机视觉一个非常重要的子任务。目标检测需要发现并准确定位自然图片中的物体。在2012年之前,目标检测主要基于手工设计的特征以及传统分类器。2012年以后,出现了 ... [详细]
  • 二维码的实现与应用
    本文介绍了二维码的基本概念、分类及其优缺点,并详细描述了如何使用Java编程语言结合第三方库(如ZXing和qrcode.jar)来实现二维码的生成与解析。 ... [详细]
  • Requests库的基本使用方法
    本文介绍了Python中Requests库的基础用法,包括如何安装、GET和POST请求的实现、如何处理Cookies和Headers,以及如何解析JSON响应。相比urllib库,Requests库提供了更为简洁高效的接口来处理HTTP请求。 ... [详细]
  • 本文深入探讨了Go语言中的接口型函数,通过实例分析其灵活性和强大功能,帮助开发者更好地理解和运用这一特性。 ... [详细]
  • Go从入门到精通系列视频之go编程语言密码学哈希算法(二) ... [详细]
  • 在OpenCV 3.1.0中实现SIFT与SURF特征检测
    本文介绍如何在OpenCV 3.1.0版本中通过Python 2.7环境使用SIFT和SURF算法进行图像特征点检测。由于这些高级功能在OpenCV 3.0.0及更高版本中被移至额外的contrib模块,因此需要特别处理才能正常使用。 ... [详细]
  • Jupyter Notebook多语言环境搭建指南
    本文详细介绍了如何在Linux环境下为Jupyter Notebook配置Python、Python3、R及Go四种编程语言的环境,包括必要的软件安装和配置步骤。 ... [详细]
  • Android与JUnit集成测试实践
    本文探讨了如何在Android项目中集成JUnit进行单元测试,并详细介绍了修改AndroidManifest.xml文件以支持测试的方法。 ... [详细]
  • 小编给大家分享一下Vue3中如何提高开发效率,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获, ... [详细]
  • 探索百度WebFE团队打造的强大HTML5上传插件Web Uploader
    本文将详细介绍由百度WebFE团队开发的Web Uploader,这是一款集成了HTML5与Flash技术的上传组件,以其卓越的用户体验和强大的功能著称。 ... [详细]
  • 实践指南:使用Express、Create React App与MongoDB搭建React开发环境
    本文详细介绍了如何利用Express、Create React App和MongoDB构建一个高效的React应用开发环境,旨在为开发者提供一套完整的解决方案,包括环境搭建、数据模拟及前后端交互。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
author-avatar
手机用户2602919547
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有