热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

celery框架

Celery架构Celery架构由三部分组成,消息中间件(messagebroker),任务执行单元(worker)和任务执行结果储存(backend-taskresultstor
Celery架构

Celery架构由三部分组成,消息中间件(message broker) , 任务执行单元(worker)  和任务执行结果储存(backend-task result store)组成

安装的celery主体模块,默认只提供worker,要结合其他技术提供broker和backend(两个存储的单位)

消息中间件

Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等

任务执行单元

Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。

任务结果存储

Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等

 

使用场景

异步任务:将耗时操作任务提交给Celery去异步执行,比如发送短信/邮件、消息推送、音视频处理等等

定时任务:定时执行某件事情,比如每天数据统计

 

Celery的安装配置

pip install celery

消息中间件:RabbitMQ/Redis

app = celery.Celery(‘任务名‘,broker=‘xxx‘,backend=‘xxx‘,include=[‘xxx‘,‘xxx‘])

Celery执行异步任务

包架构封装

project
    ├── celery_task      # celery包
    │   ├── __init__.py # 包文件
    │   ├── celery.py   # celery连接和配置相关文件,且名字必须交celery.py
    │   └── tasks.py    # 所有任务函数
    ├── add_task.py      # 添加任务
    └── get_result.py   # 获取结果

基本使用

celery.py

# 1)创建app + 任务

# 2)启动celery(app)服务:
# 非windows
# 命令:celery worker -A celery_task -l info
# windows:
# pip3 install eventlet
# celery worker -A celery_task -l info -P eventlet

# 3)添加任务:手动添加,要自定义添加任务的脚本,右键执行脚本

# 4)获取结果:手动获取,要自定义获取任务的脚本,右键执行脚本


from celery import Celery

broker = redis://127.0.0.1:6379/1
backend = redis://127.0.0.1:6379/2
app = Celery(broker=broker, backend=backend, include=[celery_task.tasks])

 

tasks.py

from .celery import app
import time
@app.task
def add(n, m):
    print(n)
    print(m)
    time.sleep(10)
    print(n+m的结果:%s % (n + m))
    return n + m

@app.task
def low(n, m):
    print(n)
    print(m)
    print(n-m的结果:%s % (n - m))
    return n - m

add_task.py

from celery_task import tasks

# 添加立即执行任务
t1 = tasks.add.delay(10, 20)
t2 = tasks.low.delay(100, 50)
print(t1.id)


# 添加延迟任务
from datetime import datetime, timedelta
def eta_second(second):
    ctime = datetime.now()
    utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
    time_delay = timedelta(secOnds=second)
    return utc_ctime + time_delay

tasks.low.apply_async(args=(200, 50), eta=eta_second(10))

get_result.py

from celery_task.celery import app

from celery.result import AsyncResult

id = 21325a40-9d32-44b5-a701-9a31cc3c74b5
if __name__ == __main__:
    async = AsyncResult(id=id, app=app)
    if async.successful():
        result = async.get()
        print(result)
    elif async.failed():
        print(任务失败)
    elif async.status == PENDING:
        print(任务等待中被执行)
    elif async.status == RETRY:
        print(任务异常后正在重试)
    elif async.status == STARTED:
        print(任务已经开始被执行)

高级使用

celery.py

# 1)创建app + 任务

# 2)启动celery(app)服务:
# 非windows
# 命令:celery worker -A celery_task -l info
# windows:
# pip3 install eventlet
# celery worker -A celery_task -l info -P eventlet

# 3)添加任务:自动添加任务,所以要启动一个添加任务的服务
# 命令:celery beat -A celery_task -l info

# 4)获取结果


from celery import Celery

broker = redis://127.0.0.1:6379/1
backend = redis://127.0.0.1:6379/2
app = Celery(broker=broker, backend=backend, include=[celery_task.tasks])


# 时区
app.conf.timezOne= Asia/Shanghai
# 是否使用UTC
app.conf.enable_utc = False

# 任务的定时配置
from datetime import timedelta
from celery.schedules import crontab
app.conf.beat_schedule = {
    low-task: {
        task: celery_task.tasks.low,
        schedule: timedelta(secOnds=3),
        # ‘schedule‘: crontab(hour=8, day_of_week=1),  # 每周一早八点
        args: (300, 150),
    }
}

tasks.py

from .celery import app

import time
@app.task
def add(n, m):
    print(n)
    print(m)
    time.sleep(10)
    print(n+m的结果:%s % (n + m))
    return n + m


@app.task
def low(n, m):
    print(n)
    print(m)
    print(n-m的结果:%s % (n - m))
    return n - m

get_result.py

from celery_task.celery import app

from celery.result import AsyncResult

id = 21325a40-9d32-44b5-a701-9a31cc3c74b5
if __name__ == __main__:
    async = AsyncResult(id=id, app=app)
    if async.successful():
        result = async.get()
        print(result)
    elif async.failed():
        print(任务失败)
    elif async.status == PENDING:
        print(任务等待中被执行)
    elif async.status == RETRY:
        print(任务异常后正在重试)
    elif async.status == STARTED:
        print(任务已经开始被执行)

django中使用

celery.py

# 重点:要将 项目名.settings 所占的文件夹添加到环境变量
# import sys
# sys.path.append(r‘项目绝对路径‘)

# 开启django支持
import os
os.environ.setdefault(DJANGO_SETTINGS_MODULE, 项目名.settings)
import django
django.setup()



# 1)创建app + 任务

# 2)启动celery(app)服务:
# 非windows
# 命令:celery worker -A celery_task -l info
# windows:
# pip3 install eventlet
# celery worker -A celery_task -l info -P eventlet

# 3)添加任务:自动添加任务,所以要启动一个添加任务的服务
# 命令:celery beat -A celery_task -l info

# 4)获取结果


from celery import Celery

broker = redis://127.0.0.1:6379/1
backend = redis://127.0.0.1:6379/2
app = Celery(broker=broker, backend=backend, include=[celery_task.tasks])


# 时区
app.conf.timezOne= Asia/Shanghai
# 是否使用UTC
app.conf.enable_utc = False

# 任务的定时配置
from datetime import timedelta
from celery.schedules import crontab
app.conf.beat_schedule = {
    django-task: {
        task: celery_task.tasks.test_django_celery,
        schedule: timedelta(secOnds=3),
        args: (),
    }
}

tasks.py

from .celery import app

from home.models import Banner
from settings.const import BANNER_COUNT  # 轮播图最大显示条数
from home.serializers import BannerModelSerializer
from django.core.cache import cache
@app.task
def update_banner_list():
    # 获取最新内容
    banner_query = Banner.objects.filter(is_delete=False, is_show=True).order_by(-orders)[:BANNER_COUNT]
    # 序列化
    banner_data = BannerModelSerializer(banner_query, many=True).data
    for banner in banner_data:
        banner[image] = http://127.0.0.1:8000 + banner[image]
    # 更新缓存
    cache.set(banner_list, banner_data)
    return True

celery框架


推荐阅读
  • 本文介绍了一种支付平台异步风控系统的架构模型,旨在为开发类似系统的工程师提供参考。 ... [详细]
  • 本文详细介绍了Java代码分层的基本概念和常见分层模式,特别是MVC模式。同时探讨了不同项目需求下的分层策略,帮助读者更好地理解和应用Java分层思想。 ... [详细]
  • MySQL的查询执行流程涉及多个关键组件,包括连接器、查询缓存、分析器和优化器。在服务层,连接器负责建立与客户端的连接,查询缓存用于存储和检索常用查询结果,以提高性能。分析器则解析SQL语句,生成语法树,而优化器负责选择最优的查询执行计划。这一流程确保了MySQL能够高效地处理各种复杂的查询请求。 ... [详细]
  • 使用 Git Rebase -i 合并多个提交
    在开发过程中,频繁的小改动往往会生成多个提交记录。为了保持代码仓库的整洁,我们可以使用 git rebase -i 命令将多个提交合并成一个。 ... [详细]
  • malloc 是 C 语言中的一个标准库函数,全称为 memory allocation,即动态内存分配。它用于在程序运行时申请一块指定大小的连续内存区域,并返回该区域的起始地址。当无法预先确定内存的具体位置时,可以通过 malloc 动态分配内存。 ... [详细]
  • 本文介绍了多种开源数据库及其核心数据结构和算法,包括MySQL的B+树、MVCC和WAL,MongoDB的tokuDB和cola,boltDB的追加仅树和mmap,levelDB的LSM树,以及内存缓存中的一致性哈希。 ... [详细]
  • Python多线程详解与示例
    本文介绍了Python中的多线程编程,包括僵尸进程和孤儿进程的概念,并提供了具体的代码示例。同时,详细解释了0号进程和1号进程在系统中的作用。 ... [详细]
  • 本文详细介绍了Linux系统中用于管理IPC(Inter-Process Communication)资源的两个重要命令:ipcs和ipcrm。通过这些命令,用户可以查看和删除系统中的消息队列、共享内存和信号量。 ... [详细]
  • A*算法在AI路径规划中的应用
    路径规划算法用于在地图上找到从起点到终点的最佳路径,特别是在存在障碍物的情况下。A*算法是一种高效且广泛使用的路径规划算法,适用于静态和动态环境。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 网站访问全流程解析
    本文详细介绍了从用户在浏览器中输入一个域名(如www.yy.com)到页面完全展示的整个过程,包括DNS解析、TCP连接、请求响应等多个步骤。 ... [详细]
  • 两个条件,组合控制#if($query_string~*modviewthread&t(&extra(.*)))?$)#{#set$itid$1;#rewrite^ ... [详细]
  • 解决Win10下MySQL连接问题:Navicat 2003无法连接到本地MySQL服务器(10061)
    本文介绍如何在Windows 10环境下解决Navicat 2003无法连接到本地MySQL服务器的问题,包括启动MySQL服务和检查配置文件的方法。 ... [详细]
  • 本文详细介绍了如何利用Duilib界面库开发窗体动画效果,包括基本思路和技术细节。这些方法不仅适用于Duilib,还可以扩展到其他类似的界面开发工具。 ... [详细]
  • Spark中使用map或flatMap将DataSet[A]转换为DataSet[B]时Schema变为Binary的问题及解决方案
    本文探讨了在使用Spark的map或flatMap算子将一个数据集转换为另一个数据集时,遇到的Schema变为Binary的问题,并提供了详细的解决方案。 ... [详细]
author-avatar
留难龚_431
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有