热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

c#语言-多线程中的锁系统(一)

介绍平常在多线程开发中,总避免不了线程同步。本篇就对net多线程中的锁系统做个简单描述。目录一:lock、Monitor1:基础

介绍

平常在多线程开发中,总避免不了线程同步。本篇就对net多线程中的锁系统做个简单描述。
 
目录
一:lock、Monitor
 
     1:基础。
 
     2: 作用域。
 
     3:字符串锁。
 
     4:monitor使用
 
二:mutex
 
三:Semaphore
 
四:总结
 
一:lock、Monitor
1:基础
 
Lock是Monitor语法糖简化写法。Lock在IL会生成Monitor。
 
       //======Example 1=====
            string obj = "helloworld";
            lock (obj)
            {
                Console.WriteLine(obj);
            }
            //lock  IL会编译成如下写法
            bool isGetLock = false;
            Monitor.Enter(obj, ref isGetLock);
            try
            {
                Console.WriteLine(obj);
            }
            finally
            {
                if (isGetLock)
                {
                    Monitor.Exit(obj);
                }
            }
 
isGetLock参数是Framework  4.0后新加的。 为了使程序在所有情况下都能够确定,是否有必要释放锁。例: Monitor.Enter拿不到锁
 
Monitor.Enter 是可以锁值类型的。锁时会装箱成新对象。
 
2:作用域
 
     一:Lock是只能在进程内锁,不能跨进程,这个无需多说。
 
     二:关于对type类型的锁。如下:
 
   //======Example 2=====
            new Thread(new ThreadStart(() => {
                lock (typeof(int))
                {
                    Thread.Sleep(10000);
                    Console.WriteLine("Thread1释放");
                }
            })).Start();
            Thread.Sleep(1000);
            lock(typeof(int))
            {
                Console.WriteLine("Thread2释放");
            }
 
 
 
 
我们在来看个例子。
 
 
  //======Example 3=====
            Console.WriteLine(DateTime.Now);
            AppDomain appDomain1 = AppDomain.CreateDomain("AppDomain1");
            LockTest Worker1 = (LockTest)appDomain1.CreateInstanceAndUnwrap(
             Assembly.GetExecutingAssembly().FullName,
             "ConsoleApplication1.LockTest");
            Worker1.Run();
 
            AppDomain appDomain2 = AppDomain.CreateDomain("AppDomain2");
            LockTest Worker2 = (LockTest)appDomain2.CreateInstanceAndUnwrap(
            Assembly.GetExecutingAssembly().FullName,
            "ConsoleApplication1.LockTest");
            Worker2.Run();
///
    /// 跨应用程序域边界或远程访问时需要继承MarshalByRefObject
    ///
    public class LockTest : MarshalByRefObject
    {
        public void Run()
        {
            lock (typeof(int))
            {
                Thread.Sleep(10000);
                Console.WriteLine(AppDomain.CurrentDomain.FriendlyName + ": Thread 释放," + DateTime.Now);
            }
        }
    }
 
 
 
 
 
 
第一个例子说明,在同进程同域,不同线程下,锁type int,其实锁的是同一个int对象。所以要慎用。
 
第二个例子,这里就简单说下。
 
      A: CLR启动时,会创建 系统域(System Domain)和共享域(Shared Domain), 默认程序域(Default AppDomain)。 系统域和共享域是单例的。程序域可以有多个,例子中我们使用AppDomain.CreateDomain方法创建的。
 
      B:  按正常来说,每个程序域的代码都是隔离,互不影响的。但对于一些基础类型来说,每个程序域都重新加载一份,就显得有点浪费,带来额外的损耗压力。聪明的CLR会把一些基本类型Object, ValueType, Array, Enum, String, and Delegate等所在的程序集MSCorLib.dll,在CLR启动过程中都会加载到共享域。  每个程序域都会使用共享域的基础类型实例。  
 
      C: 而每个程序域都有属于自己的托管堆。托管堆中最重要的是GC heap和Loader heap。GC heap用于引用类型实例的存储,生命周期管理和垃圾回收。Loader heap保存类型系统,如MethodTable,数据结构等,Loader heap生命周期不受GC管理,跟程序域卸载有关。
 
     所以共享域中Loader heap MSCorLib.dll中的int实例会一直保留着,直到进程结束。单个程序域卸载也不受影响。作用域很大有没有!!!
 
     这时第二个例子也很容易理解了。 锁int实例是跨程序域的,MSCorLib中的基础类型都是这样。 极容易造成死锁,慎用。  而自定义类型则会加载到自己的程序域,不会影响别人。
 
3:字符串的锁
 
我们都知道锁的目的,是为了多线程下值被破坏。也知道string在 c#是个特殊对象,值是不变的,每次变动都是一个新对象值,这也是推荐stringbuilder原因。如例:
 
 
//======Example 4=====
        string str1 = "mushroom";
        string str2 = "mushroom";
        var result1 = object.ReferenceEquals(str1, str2);
        var result2 = object.ReferenceEquals(str1, "mushroom");
        Console.WriteLine(result1 + "-" + result2);
        /* output
         * True-True
         */
  
 
 正式由于c#中字符串的这种特性,所以字符串是在多线程下是不会被修改的,只读的。它存在于SystemDomain域中managed heap中的一个hash table中。Key为string本身,Value为string对象的地址。
 
 当程序域需要一个string的时候,CLR首先在这个Hashtable根据这个string的hash code试着找对应的Item。如果成功找到,则直接把对应的引用返回,否则就在SystemDomain对应的managed heap中创建该 string,并加入到hash table中,并把引用返回。所以说字符串的生命周期是基于整个进程的,也是跨AppDomain。
 
4:monitor用法
 
介绍下Wait,Pulse,PulseAll的用法。有注释,大家直接看代码吧。
 
 
 static string str = "mushroom";
        static void Main(string[] args)
        {
            new Thread(() =>
            {
                bool isGetLock = false;
                Monitor.Enter(str, ref isGetLock);
                try
                {
                    Console.WriteLine("Thread1第一次获取锁");
                    Thread.Sleep(5000);
                    Console.WriteLine("Thread1暂时释放锁,并等待其他线程释放通知信号。");
                    Monitor.Wait(str); 
                    Console.WriteLine("Thread1接到通知,第二次获取锁。");
                    Thread.Sleep(1000);
                } 
                finally
                {
                    if (isGetLock)
                    {
                        Monitor.Exit(str);
                        Console.WriteLine("Thread1释放锁");
                    }
                }
            }).Start();
            Thread.Sleep(1000);
            new Thread(() =>
            {
                bool isGetLock = false;
                Monitor.Enter(str, ref isGetLock); //一直等待中,直到其他释放。
                try
                {
                    Console.WriteLine("Thread2获得锁");
                    Thread.Sleep(5000);
                    Monitor.Pulse(str); //通知队列里一个线程,改变锁状态。  Pulseall 通知所有的
                    Console.WriteLine("Thread2通知其他线程,改变状态。");
                    Thread.Sleep(1000);
                }
                finally
                {
                    if (isGetLock)
                    {
                        Monitor.Exit(str);
                        Console.WriteLine("Thread2释放锁");
                    }
                }
 
            }).Start();
            Console.ReadLine();
 
 
二:mutex
 lock是不能跨进程锁的。 mutex作用和lock类似,是能跨进程锁的。 我们来看个例子
 
 
    static bool createNew = false;
        //第一个参数 是否应拥有互斥体的初始所属权。即createNew true时,mutex默认获得处理信号
        //第二个是名字,第三个是否成功。
        public static Mutex mutex = new Mutex(true, "mushroom.mutex", out createNew);
 
        static void Main(string[] args)
        {
            //======Example 5=====
            if (createNew)  //第一个创建成功,这时候已经拿到锁了。 无需再WaitOne了。一定要注意。
            {
                try
                {
                    Run();
                }
                finally
                {
                    mutex.ReleaseMutex(); //释放当前锁。  
                }
            }
            //WaitOne 函数作用是阻止当前线程,直到拿到收到其他实例释放的处理信号。
            //第一个参数是等待超时时间,第二个是否退出上下文同步域。
            else if (mutex.WaitOne(10000,false))//
            {
                try
                {
                    Run();
                }
                finally
                {
                    mutex.ReleaseMutex();
                }
            }
            else//如果没有发现处理信号
            {
                Console.WriteLine("已经有实例了。");
                Console.ReadLine();
            }
        }
        static void Run()
        {
            Console.WriteLine("实例1");
            Console.ReadLine();
        }
 
 
 
我们顺序起A  B实例测试下。   A首先拿到锁,输出 实例1 。   B在等待, 如果10秒内A释放,B拿到执行Run()。  超时后输出  已经有实例了。
 
这里注意的是第一个拿到处理信号 的实例,已经拿到锁了。不需要再WaitOne。  否则报异常。  
 
 
 
三:Semaphore
 即信号量,我们可以把它理解为升级版的mutex。mutex对一个资源进行锁,semaphore则是对多个资源进行加锁。
 
semaphore内部一个线程计数器,线程每调用一次,计数器减一,释放后对应加一。 超出线程数量则排队等候。semaphore也是可以跨进程的。
 
 
 static void Main(string[] args)
        {
            Console.WriteLine("准备处理队列");
 
            bool createNew = false;
 
            SemaphoreSecurity ss = new SemaphoreSecurity(); //信号量权限控制
            Semaphore semaphore = new Semaphore(2, 2, "mushroom.Semaphore", out createNew,null);
            for (int i = 1; i <= 5; i++)
            {
                new Thread((arg) =>
                {
                    semaphore.WaitOne();
                    Console.WriteLine(arg + "处理中");
                    Thread.Sleep(10000);
                    semaphore.Release(); //即semaphore.Release(1)
                    //semaphore.Release(5);可以释放多个,但不能超过最大值。如果最后释放的总量超过本身总量,也会报错。 不建议使用
 
                }).Start(i);
            }
            Console.ReadLine();
        }
 
 
 
四:总结
 mutex和Semaphore  性能较差,需要跨进程的时候,再使用。
 
 lock和Monitor    性能较好些。
 
 注意死锁。

推荐阅读
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 本文详细介绍了Java中org.w3c.dom.Text类的splitText()方法,通过多个代码示例展示了其实际应用。该方法用于将文本节点在指定位置拆分为两个节点,并保持在文档树中。 ... [详细]
  • 本文探讨了如何优化和正确配置Kafka Streams应用程序以确保准确的状态存储查询。通过调整配置参数和代码逻辑,可以有效解决数据不一致的问题。 ... [详细]
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • 本文详细介绍了Java中的访问器(getter)和修改器(setter),探讨了它们在保护数据完整性、增强代码可维护性方面的重要作用。通过具体示例,展示了如何正确使用这些方法来控制类属性的访问和更新。 ... [详细]
  • andr ... [详细]
  • PHP 5.5.0rc1 发布:深入解析 Zend OPcache
    2013年5月9日,PHP官方发布了PHP 5.5.0rc1和PHP 5.4.15正式版,这两个版本均支持64位环境。本文将详细介绍Zend OPcache的功能及其在Windows环境下的配置与测试。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 深入理解Java泛型:JDK 5的新特性
    本文详细介绍了Java泛型的概念及其在JDK 5中的应用,通过具体代码示例解释了泛型的引入、作用和优势。同时,探讨了泛型类、泛型方法和泛型接口的实现,并深入讲解了通配符的使用。 ... [详细]
  • 并发编程:深入理解设计原理与优化
    本文探讨了并发编程中的关键设计原则,特别是Java内存模型(JMM)的happens-before规则及其对多线程编程的影响。文章详细介绍了DCL双重检查锁定模式的问题及解决方案,并总结了不同处理器和内存模型之间的关系,旨在为程序员提供更深入的理解和最佳实践。 ... [详细]
  • RecyclerView初步学习(一)
    RecyclerView初步学习(一)ReCyclerView提供了一种插件式的编程模式,除了提供ViewHolder缓存模式,还可以自定义动画,分割符,布局样式,相比于传统的ListVi ... [详细]
  • 本文详细探讨了VxWorks操作系统中双向链表和环形缓冲区的实现原理及使用方法,通过具体示例代码加深理解。 ... [详细]
  • ###问题删除目录时遇到错误提示:rm:cannotremoveusrlocaltmp’:Directorynotempty即使用rm-rf,还是会出现 ... [详细]
  • 本文总结了Java程序设计第一周的学习内容,涵盖语言基础、编译解释过程及基本数据类型等核心知识点。 ... [详细]
  • 本文详细介绍了Java中的输入输出(IO)流,包括其基本概念、分类及应用。IO流是用于在程序和外部资源之间传输数据的一套API。根据数据流动的方向,可以分为输入流(从外部流向程序)和输出流(从程序流向外部)。此外,还涵盖了字节流和字符流的区别及其具体实现。 ... [详细]
author-avatar
暗夜风线_371
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有