作者:路路 | 来源:互联网 | 2023-08-31 17:46
下边介绍一下lucene的核心类:(参考luceneinaction)主要有两部分组成,核心索引类和核心搜索类,顾名思意,就是用来建立索引和用来搜索的类。IndexWriter:可
下边介绍一下lucene的核心类:(参考lucene in action)
主要有两部分组成,核心索引类和核心搜索类,顾名思意,就是用来建立索引和用来搜索的类。
IndexWriter:可以对索引进行写操作,但不能读取或者搜索。是唯一能写索引的类。
Directory:Directory 类代表一个Lucene索引的位置。它是一个抽象类,允许它的子类(其中的两个包含在Lucene中)在合适时存储索引。在我们的Indexer示例中, 我们使用一个实际文件系统目录的路径传递给IndexWriter的构造函数来获得Directory的一个实例。IndexWriter然后使用 Directory的一个具体实现FSDirectory,并在文件系统的一个目录中创建索引。在你的应用程序中,你可能较喜欢将Lucene索引存储在 磁盘上。这时可以使用FSDirectory,一个包含文件系统真实文件列表的Driectory子类,如同我们在Indexer中一样。另一个 Directory的具体子类是RAMDirectory。尽管它提供了与FSDirectory相同的接口,RAMDirectory将它的所有数据加 载到内存中。所以这个实现对较小索引很有用处,可以全部加载到内存中并在程序关闭时销毁。因为所有数据加载到快速存取的内存中而不是在慢速的硬盘 上,RAMDirectory适合于你需要快速访问索引的情况,不管是索引或搜索。做为实例,Lucene的开发者在所有他们的单元测试中做了扩展使用: 当测试运行时,快速的内存驻留索引被创建搜索,当测试结束时,索引自动销毁,不会在磁盘上留下任何残余。当然,在将文件缓存到内存的操作系统中使用时 RAMDirectory和FSDirectory之间的性能差别较小
Analyzer:分析文本内容,提取关键字
Document:一个Document代表字段的集合。你可以把它想象为以后可获取的虚拟文档—一块数据,如一个网页、一个邮件消息或一个文本文件。一个文档的字段代表这个文档或与这个文档相关的元数据
Field:在索引中的每个Document含有一个或多个字段,具体化为Field类。每个字段相应于数据的一个片段,将在搜索时查询或从索引中重新获取。
Lucene提供四个不同的字段类型,你可以从中做出选择:
Keyword—不被分析,但是被索引并逐字存储到索引中。这个类型适合于原始值需要保持原样的字段,如URL、文件系统路径、日期、个人名称、社会安全号码、电话号码等等。例如,我们在Indexer(列表1.1)中把文件系统路径作为Keyword字段。
UnIndexed —不被分析也不被索引,但是它的值存储到索引中。这个类型适合于你需要和搜索结果一起显示的字段(如URL或数据库主键),但是你从不直接搜索它的值。因 为这种类型字段的原始值存储在索引中,这种类型不适合于存放比较巨大的值,如果索引大小是个问题的话。
UnStored—和UnIndexed相反。这个字段类型被分析并索引但是不存储在索引中。它适合于索引大量的文本而不需要以原始形式重新获得它。例如网页的主体或任休其它类型的文本文档。
Text —被分析并索引。这就意味着这种类型的字段可以被搜索,但是要小心字段大小。如果要索引的数据是一个String,它也被存储;但如果数据(如我们的 Indexer例子)是来自一个Reader,它就不会被存储。这通常是混乱的来源,所以在使用Field.Text时要注意这个区别。
所有字段由名称和值组成。你要使用哪种字段类型取决于你要如何使用这个字段和它的值。严格来说,Lucene只有一个字段类型:以各自特征来区分的字段。有些是被分析的,有些不是;有些是被索引,然面有些被逐字地存储等等。
注 意 注意Field.Text(String, String)和Field.Text(String, Reader)之间的区别。String变量存储字段数据,而Reader变量不存储。为索引一个String而又不想存储它,可以用 Field.UnStored(String, String)
下边是核心搜索类:
IndexSearcher:IndexSearcher 用来搜索而IndexWriter用来索引:暴露几个搜索方法的索引的主要链接。你可以把IndexSearcher想象为以只读方式打开索引的一个类。 它提供几个搜索方法,其中一些在抽象基类Searcher中实现;最简单的接受单个Query对象做为参数并返回一个Hits对象。这个方法的典型应用类 似这样:
IndexSearcher is = new IndexSearcher(
FSDirectory.getDirectory(“/tmp/index”, false));
Query q = new TermQuery(new Term(“contents”, “lucene”));
Hits hits = is.search(q);
Term:
Term是搜索的基本单元。与Field对象类似,它由一对字符串元素组成:字段的名称和字段的值。注意Term对象也和索引过程有关。但是它们是由Lucene内部生成,所以在索引时你
一般不必考虑它们。在搜索时,你可能创建Term对象并TermQuery同时使用。
Query q = new TermQuery(new Term(“contents”, “lucene”));
Hits hits = is.search(q);
这段代码使Lucene找出在contents字段中含有单词lucene的所有文档。因为TermQuery对象继承自它的抽象父类Query,你可以在等式的左边用Query类型。
Query
Lucene 中包含一些Query的具体子类。到目前为止,在本章中我们仅提到过最基本的Lucene Query:TermQuery。其它Query类型有BooleanQuery,PhraseQuery, PrefixQuery, PhrasePrefixQuery, RangeQuery, FilteredQuery和SpanQuery
TermQuery
TermQuery是Lucene支持的最基本的查询类型,并且它也是最原始的查询类型之一。它用来匹配含有指定值的字段的文档.
Hits类是一个搜索结果(匹配给定查询的文档)文档队列指针的简单容器。基于性能考虑,Hits的实例并不从索引中加载所有匹配查询的所有文档,而是每次一小部分