热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

AdaBoost算法原理及其理论基础深入解析

AdaBoost算法是一种迭代增强技术,主要通过在相同的数据集上训练多个弱分类器,并将这些弱分类器组合成一个强大的最终分类器。该方法的核心在于通过调整每个训练样本的权重,使后续的弱分类器更加关注之前分类错误的样本,从而逐步提高整体模型的准确性和泛化能力。

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。对adaBoost算法的研究以及应用大多集中于分类问题,同时也出现了一些在回归问题上的应用。就其应用adaBoost系列主要解决了: 两类问题、多类单标签问题、多类多标签问题、大类单标签问题、回归问题。它用全部的训练样本进行学习。

技术分享

                  技术分享

技术分享

技术分享                                   

   技术分享

技术分享

Adaboost算法优缺点:

优点

1)  Adaboost是一种有很高精度的分类器

2)  可以使用各种方法构建子分类器,Adaboost算法提供的是框架

3)  当使用简单分类器时,计算出的结果是可以理解的。而且弱分类器构造极其简单

4)  简单,不用做特征筛选

5)  不用担心overfitting(过度拟合)

缺点

1)  容易受到噪声干扰,这也是大部分算法的缺点

2)  训练时间过长

3)  执行效果依赖于弱分类器的选择

 

#########################Weka###########################

Adaboost m1是一个非常受欢迎的二元分类算法

 技术分享

#################R语言############################

library(adabag)

## rpart library should be loaded

data(iris)

iris.adaboost <- boosting(Species~., data=iris, boos=TRUE, mfinal=5)

iris.adaboost

## Data Vehicle (four classes)

data(Vehicle)

l <- length(Vehicle[,1])

sub <- sample(1:l,2*l/3)

mfinal <- 10

maxdepth <- 5

Vehicle.rpart <- rpart(Class~.,data=Vehicle[sub,],maxdepth=maxdepth)

Vehicle.rpart.pred <- predict(Vehicle.rpart,newdata=Vehicle[-sub, ],type="class")

tb <- table(Vehicle.rpart.pred,Vehicle$Class[-sub])

error.rpart <- 1-(sum(diag(tb))/sum(tb))

tb

error.rpart

Vehicle.adaboost <- boosting(Class ~.,data=Vehicle[sub, ],mfinal=mfinal, coeflearn="Zhu",

    cOntrol=rpart.control(maxdepth=maxdepth))

Vehicle.adaboost.pred <- predict.boosting(Vehicle.adaboost,newdata=Vehicle[-sub, ])

Vehicle.adaboost.pred$confusion

Vehicle.adaboost.pred$error

#comparing error evolution in training and test set

errorevol(Vehicle.adaboost,newdata=Vehicle[sub, ])->evol.train

errorevol(Vehicle.adaboost,newdata=Vehicle[-sub, ])->evol.test

plot.errorevol(evol.test,evol.train)

 

adaboost原理与理论


推荐阅读
  • 反向投影技术主要用于在大型输入图像中定位特定的小型模板图像。通过直方图对比,它能够识别出最匹配的区域或点,从而确定模板图像在输入图像中的位置。 ... [详细]
  • 本问题探讨了在特定条件下排列儿童队伍的方法数量。题目要求计算满足条件的队伍排列总数,并使用递推算法和大数处理技术来解决这一问题。 ... [详细]
  • 解决Anaconda安装TensorFlow时遇到的TensorBoard版本问题
    本文介绍了在使用Anaconda安装TensorFlow时遇到的“Could not find a version that satisfies the requirement tensorboard”错误,并提供详细的解决方案,包括创建虚拟环境和配置PyCharm项目。 ... [详细]
  • 查找最小值的操作是很简单的,只需要从根节点递归的遍历到左子树节点即可。当遍历到节点的左孩子为NULL时,则这个节点就是树的最小值。上面的树中,从根节点20开始,递归遍历左子 ... [详细]
  • 在项目部署后,Node.js 进程可能会遇到不可预见的错误并崩溃。为了及时通知开发人员进行问题排查,我们可以利用 nodemailer 插件来发送邮件提醒。本文将详细介绍如何配置和使用 nodemailer 实现这一功能。 ... [详细]
  • 本文详细探讨了JavaScript中的作用域链和闭包机制,解释了它们的工作原理及其在实际编程中的应用。通过具体的代码示例,帮助读者更好地理解和掌握这些概念。 ... [详细]
  • Python 内存管理机制详解
    本文深入探讨了Python的内存管理机制,涵盖了垃圾回收、引用计数和内存池机制。通过具体示例和专业解释,帮助读者理解Python如何高效地管理和释放内存资源。 ... [详细]
  • C#设计模式学习笔记:观察者模式解析
    本文将探讨观察者模式的基本概念、应用场景及其在C#中的实现方法。通过借鉴《Head First Design Patterns》和维基百科等资源,详细介绍该模式的工作原理,并提供具体代码示例。 ... [详细]
  • Appium + Java 自动化测试中处理页面空白区域点击问题
    在进行移动应用自动化测试时,有时会遇到某些页面没有返回按钮,只能通过点击空白区域返回的情况。本文将探讨如何在Appium + Java环境中有效解决此类问题,并提供详细的解决方案。 ... [详细]
  • 如何清除Chrome浏览器地址栏的特定历史记录
    在使用Chrome浏览器时,你可能会发现地址栏保存了大量浏览记录。有时你可能希望删除某些特定的历史记录而不影响其他数据。本文将详细介绍如何单独删除地址栏中的特定记录以及批量清除所有历史记录的方法。 ... [详细]
  • 利用Selenium与ChromeDriver实现豆瓣网页全屏截图
    本文介绍了一种使用Selenium和ChromeDriver结合Python代码,轻松实现对豆瓣网站进行完整页面截图的方法。该方法不仅简单易行,而且解决了新版Selenium不再支持PhantomJS的问题。 ... [详细]
  • 嵌入式开发环境搭建与文件传输指南
    本文详细介绍了如何为嵌入式应用开发搭建必要的软硬件环境,并提供了通过串口和网线两种方式将文件传输到开发板的具体步骤。适合Linux开发初学者参考。 ... [详细]
  • 解决TensorFlow CPU版本安装中的依赖问题
    本文记录了在安装CPU版本的TensorFlow过程中遇到的依赖问题及解决方案,特别是numpy版本不匹配和动态链接库(DLL)错误。通过详细的步骤说明和专业建议,帮助读者顺利安装并使用TensorFlow。 ... [详细]
  • 探索新一代API文档工具,告别Swagger的繁琐
    对于后端开发者而言,编写和维护API文档既繁琐又不可或缺。本文将介绍一款全新的API文档工具,帮助团队更高效地协作,简化API文档生成流程。 ... [详细]
  • 本文探讨了在构建应用程序时,如何对不同类型的数据进行结构化设计。主要分为三类:全局配置、用户个人设置和用户关系链。每种类型的数据都有其独特的用途和应用场景,合理规划这些数据结构有助于提升用户体验和系统的可维护性。 ... [详细]
author-avatar
风桥残岸_476
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有