热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

最短路径算法之迪杰斯特拉算法

Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为

Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。

其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。

初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。

例如,对下图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。

c1

Dijkstra算法的迭代过程:

dijkstra2

主题好好理解上图!

以下是具体的实现(C/C++):

/***************************************
*?About:????有向图的Dijkstra算法实现
*?Author:???Tanky?Woo
*?Blog:?????www.WuTianQi.com
***************************************/

#include?
using?namespace?std;

const?int?maxnum?=?100;
const?int?maxint?=?999999;

void?Dijkstra(int?n,?int?v,?int?*dist,?int?*prev,?int?c[maxnum][maxnum])
{
    bool?s[maxnum];????//?判断是否已存入该点到S集合中
    for(int?i=1;?i<=n;?++i)
    {
        dist[i]?=?c[v][i];
        s[i]?=?0;?????//?初始都未用过该点
        if(dist[i]?==?maxint)
            prev[i]?=?0;
        else
            prev[i]?=?v;
    }
    dist[v]?=?0;
    s[v]?=?1;

    //?依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
    //?一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
    for(int?i=2;?i<=n;?++i)
    {
        int?tmp?=?maxint;
        int?u?=?v;
        //?找出当前未使用的点j的dist[j]最小值
        for(int?j=1;?j<=n;?++j)
            if((!s[j])?&&?dist[j]=1;?--i)
        if(i?!=?1)
            cout?<?";
        else
            cout?<>?n;
    //?输入路径数
    cin?>>?line;
    int?p,?q,?len;??????????//?输入p,?q两点及其路径长度

    //?初始化c[][]为maxint
    for(int?i=1;?i<=n;?++i)
        for(int?j=1;?j<=n;?++j)
            c[i][j]?=?maxint;

    for(int?i=1;?i<=line;?++i)
    {
        cin?>>?p?>>?q?>>?len;
        if(len?

输入数据:
5
7
1 2 10
1 4 30
1 5 100
2 3 50
3 5 10
4 3 20
4 5 60
输出数据:
999999 10 999999 30 100
10 999999 50 999999 999999
999999 50 999999 20 10
30 999999 20 999999 60
100 999999 10 60 999999
源点到最后一个顶点的最短路径长度: 60
源点到最后一个顶点的路径为: 1 -> 4 -> 3 -> 5

最后给出两道题目练手,都是直接套用模版就OK的:
1.HDOJ 1874 畅通工程续
http://www.wutianqi.com/?p=1894

2.HDOJ 2544 最短路
http://www.wutianqi.com/?p=1892


推荐阅读
  • 本教程详细介绍了如何使用 TensorFlow 2.0 构建和训练多层感知机(MLP)网络,涵盖回归和分类任务。通过具体示例和代码实现,帮助初学者快速掌握 TensorFlow 的核心概念和操作。 ... [详细]
  • 本题探讨了在大数据结构背景下,如何通过整体二分和CDQ分治等高级算法优化处理复杂的时间序列问题。题目设定包括节点数量、查询次数和权重限制,并详细分析了解决方案中的关键步骤。 ... [详细]
  • Java 实现二维极点算法
    本文介绍了一种使用 Java 编程语言实现的二维极点算法。该算法用于从一组二维坐标中筛选出极点,适用于需要处理几何图形和空间数据的应用场景。文章不仅详细解释了算法的工作原理,还提供了完整的代码示例。 ... [详细]
  • 本次挑战涉及数组截断操作,初看似乎简单,但实际上考察了对数组切片方法的理解与应用。本文将详细解析该算法的实现逻辑,并提供多个示例以加深理解。 ... [详细]
  • 本文深入探讨了Memcached的内存管理机制,特别是其采用的Slab Allocator技术。该技术通过预分配不同大小的内存块来有效解决内存碎片问题,并确保高效的数据存储与检索。文中详细描述了Slab Allocator的工作原理、内存分配流程以及相关的优化策略。 ... [详细]
  • 华为智慧屏:超越屏幕尺寸的智能进化
    继全球发布后,华为智慧屏于9月26日在上海正式亮相,推出65英寸和75英寸版本。该产品不仅在屏幕尺寸上有所突破,更在性能和智能化方面实现了显著提升。 ... [详细]
  • 本文介绍如何利用栈数据结构在C++中判断字符串中的括号是否匹配。通过顺序栈和链栈两种方式实现,并详细解释了算法的核心思想和具体实现步骤。 ... [详细]
  • Redux入门指南
    本文介绍Redux的基本概念和工作原理,帮助初学者理解如何使用Redux管理应用程序的状态。Redux是一个用于JavaScript应用的状态管理库,特别适用于React项目。 ... [详细]
  • 历经三十年的开发,Mathematica 已成为技术计算领域的标杆,为全球的技术创新者、教育工作者、学生及其他用户提供了一个领先的计算平台。最新版本 Mathematica 12.3.1 增加了多项核心语言、数学计算、可视化和图形处理的新功能。 ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 如何使用Ping命令来测试网络连接?当网卡安装和有关参数配置完成后,可以使用ping命令来测试一下网络是否连接成功。以winXP为例1、打开XP下DOS窗口具体操作是点击“开始”菜 ... [详细]
  • 本文总结了优化代码可读性的核心原则与技巧,通过合理的变量命名、函数和对象的结构化组织,以及遵循一致性等方法,帮助开发者编写更易读、维护性更高的代码。 ... [详细]
  • 深入解析Java虚拟机(JVM)架构与原理
    本文旨在为读者提供对Java虚拟机(JVM)的全面理解,涵盖其主要组成部分、工作原理及其在不同平台上的实现。通过详细探讨JVM的结构和内部机制,帮助开发者更好地掌握Java编程的核心技术。 ... [详细]
  • 本文详细介绍了Hive中用于日期和字符串相互转换的多种函数,包括从时间戳到日期格式的转换、日期到时间戳的转换,以及如何处理不同格式的日期字符串。通过这些函数,用户可以轻松实现日期和字符串之间的灵活转换,满足数据处理中的各种需求。 ... [详细]
  • 1.执行sqlsever存储过程,消息:SQLServer阻止了对组件“AdHocDistributedQueries”的STATEMENT“OpenRowsetOpenDatas ... [详细]
author-avatar
浐灞半岛商业_318
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有