热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

最短编辑距离算法实现

一,算法介绍在CS124课程的第一周提到求解两个字符串相似度的算法MinimumEditDistance(最短编辑距离)算法。该算法在NLP(自然语言处理)中也会用到。如何定义相似

一,算法介绍

在CS124课程的第一周提到 求解两个字符串相似度的算法---Minimum Edit Distance(最短编辑距离)算法。该算法在NLP(自然语言处理)中也会用到。

如何定义相似度呢?任给两个字符串X 和Y,使用以下三种操作将 字符串X 变到 字符串Y  :①插入(Insert)操作;②删除操作(delete);③替换操作(substitute)

比如 字符串X="intention" ,  字符串Y="execution"。从字符串X 转换成 字符串Y 如下图所示:

技术分享

定义:插入操作的代价为1,删除操作的代价为1,替换操作的代价为2(称为: Levenshtein distance)。那么,"intention"  变成  "execution" 执行了三次替换,一次删除,一次插入。因此,总代价为8

而这个代价又称为编辑距离, 用之来 衡量 两个字符串的相似程度。显然,若两个字符串越相似,则从一个字符串变到另一个字符串所需要的 “操作” 步骤 就越少。

二,动态规则求解最短编辑距离

为什么能用动态规划来求解呢??该问题可以分解成若干个子问题;?子问题之间具有重叠性(可“查表”),具体可参考一些动态规划的示例1,示例2.

假设字符串X的长度为n,字符串Y的长度为m,用d[n][m] 表示 字符串X 转换成 字符串Y 的最短编辑距离

定义 d[i][j] 表示 字符串X的子串X[1...i]   转换成 字符串Y 的子串 Y[1...j] 的最短编辑距离(这里的 下标从1开始,不从0开始),有如下动态规划公式:

技术分享

要想从 长度为 i 的源字符串X 转换成 长度为 j 的目标字符串Y,有三种方式:

①先将 源字符串X 的前 i-1 个字符 X[1...i-1] 转换成 目标字符串Y[1...j], 然后再 删除字符串X 的第 i 个字符source[i]

②先将 源字符串X[1...j] 转换成 目标字符串Y[1...j-1] ,然后再 插入字符串Y的第 j 个字符 target[j] 

③先将 源字符串X[1...i-1] 转换成 目标字符串Y[1...j-1],然后 源字符串中的 第 i 个字符X[i] 替换为 目标字符串的第 j 个字符 Y[j]

为什么 只有上述三种方式呢?

因为我们是将 源问题 的求解,分解成若干个子问题的求解,子问题的规模比原问题要小1。源问题 X[1...i]  转换成 Y[1...j]  。比如,子问题是:先将X[1...i-1] 转换成 Y[1...j] ,...

结合前面定义的 操作代价(删除和插入操作代价为1,替换操作为2),就是下面这个公式:

技术分享

解释一下为什么 if source[i]=target[j]时,替换的 代价为0呢?if source[i]=target[j] 表明 字符串X 的第 i 个字符串 和 字符串Y的第 j 个字符是相同的

要想将 X[1...i] 转换成 Y[1...j] ,对于第三种转换方式:先将 源字符串X[1...i-1] 转换成 目标字符串Y[1...j-1] ,既然:字符串X 的第 i 个字符串 和 字符串Y的第 j 个字符是相同的,那就相当于“自己替换自己”,或者说是 不需要替换操作了嘛。这也是下面代码实现逻辑:

                if (source.charAt(i-1) == target.charAt(j-1)) {
                    dp[i][j] = dp[i - 1][j - 1];

三,代码实现

伪代码描述如下:

技术分享

JAVA实现:

 1 public class MinimumEditDistance {
 2 
 3     public static void main(String[] args) {
 4         MinimumEditDistance med = new MinimumEditDistance();
 5         String source = "execution";
 6         String target = "intention";
 7         int result = med.similarDegree(source, target);
 8         System.out.println(result);
 9     }
10 
11     public int similarDegree(String source, String target) {
12         if(source == null || target == null)
13             throw new IllegalArgumentException("illegal input String");
14 
15         int sourceLen = source.length();
16         int targetLen = target.length();
17 
18         int[][] dp = new int[sourceLen + 1][targetLen +1];
19         //init
20         dp[0][0] = 0;
21         for(int i = 1; i <= sourceLen; i++)
22             dp[i][0] = i;
23         for(int i = 1; i <= targetLen; i++)
24             dp[0][i] = i;
25 
26         for(int i = 1; i <= sourceLen; i++) {
27             for(int j = 1; j <= targetLen; j++) {
28                 if (source.charAt(i-1) == target.charAt(j-1)) {
29                     dp[i][j] = dp[i - 1][j - 1];
30                 }else{
31                     int insert = dp[i][j - 1] + 1;//source[0,i] to target[0,j-1] then insert target[j]
32                     int delete = dp[i - 1][j] + 1;//source[0,i-1] to target[0,j] then delete source[i]
33                     int substitute = dp[i - 1][j - 1] + 2;//source[0,i-1] to target[0,j-1] then substitute(source[i] by target[j])
34 
35                     int min = min(insert, delete, substitute);
36                     dp[i][j] = min;
37                 }
38             }
39         }
40         return dp[sourceLen][targetLen];
41     }
42 
43     private int min(int insert, int delete, int substitute) {
44         int tmp = insert  insert:delete;
45         int min = tmp  tmp:substitute;
46         return min;
47     }
48 }

参考:Stanford CS124课程

原文:http://www.cnblogs.com/hapjin/p/7467035.html

最短编辑距离算法实现


推荐阅读
  • 第二十五天接口、多态
    1.java是面向对象的语言。设计模式:接口接口类是从java里衍生出来的,不是python原生支持的主要用于继承里多继承抽象类是python原生支持的主要用于继承里的单继承但是接 ... [详细]
  • 本文介绍了如何在 ASP.NET 中设置 Excel 单元格格式为文本,获取多个单元格区域并作为表头,以及进行单元格合并、赋值、格式设置等操作。 ... [详细]
  • 如果应用程序经常播放密集、急促而又短暂的音效(如游戏音效)那么使用MediaPlayer显得有些不太适合了。因为MediaPlayer存在如下缺点:1)延时时间较长,且资源占用率高 ... [详细]
  • [c++基础]STL
    cppfig15_10.cppincludeincludeusingnamespacestd;templatevoidprintVector(constvector&integer ... [详细]
  • importpymysql#一、直接连接mysql数据库'''coonpymysql.connect(host'192.168.*.*',u ... [详细]
  • 解决Bootstrap DataTable Ajax请求重复问题
    在最近的一个项目中,我们使用了JQuery DataTable进行数据展示,虽然使用起来非常方便,但在测试过程中发现了一个问题:当查询条件改变时,有时查询结果的数据不正确。通过FireBug调试发现,点击搜索按钮时,会发送两次Ajax请求,一次是原条件的请求,一次是新条件的请求。 ... [详细]
  • 解决Parallels Desktop错误15265的方法
    本文详细介绍了在使用Parallels Desktop时遇到错误15265的多种解决方案,包括检查网络连接、关闭代理服务器和修改主机文件等步骤。 ... [详细]
  • 解决 Windows Server 2016 网络连接问题
    本文详细介绍了如何解决 Windows Server 2016 在使用无线网络 (WLAN) 和有线网络 (以太网) 时遇到的连接问题。包括添加必要的功能和安装正确的驱动程序。 ... [详细]
  • LDAP服务器配置与管理
    本文介绍如何通过安装和配置SSSD服务来统一管理用户账户信息,并实现其他系统的登录调用。通过图形化交互界面配置LDAP服务器,确保用户账户信息的集中管理和安全访问。 ... [详细]
  • 网络爬虫的规范与限制
    本文探讨了网络爬虫引发的问题及其解决方案,重点介绍了Robots协议的作用和使用方法,旨在为网络爬虫的合理使用提供指导。 ... [详细]
  • 本文介绍了 AngularJS 中的 $compile 服务及其用法,通过示例代码展示了如何使用 $compile 动态编译和链接 HTML 元素。 ... [详细]
  • ZooKeeper 入门指南
    本文将详细介绍ZooKeeper的工作机制、特点、数据结构以及常见的应用场景,包括统一命名服务、统一配置管理、统一集群管理、服务器动态上下线和软负载均衡。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 零拷贝技术是提高I/O性能的重要手段,常用于Java NIO、Netty、Kafka等框架中。本文将详细解析零拷贝技术的原理及其应用。 ... [详细]
  • javascript分页类支持页码格式
    前端时间因为项目需要,要对一个产品下所有的附属图片进行分页显示,没考虑ajax一张张请求,所以干脆一次性全部把图片out,然 ... [详细]
author-avatar
icrochildren1035_175
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有