热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【自动驾驶】second模型训练

1,数据组织:训练验证数据生成:pythoncreate_data.pynuscenes_data_prep--data_pathNU

1,数据组织:

训练验证数据生成:

python create_data.py nuscenes_data_prep --data_path=NUSCENES_TRAINVAL_DATASET_ROOT --version="v1.0-trainval" --max_sweeps=10python create_data.py nuscenes_data_prep --data_path=NUSCENES_TEST_DATASET_ROOT --version="v1.0-test" --max_sweeps=10 --dataset_name="NuscenesDataset"

如果为自定义数据要根据类别进行修改,将数据转成bin文件,打包成pkl文件再执行上面指令。

如: (1)my_common.py 将标签与点云打包成pkl。

(2)python my_create_data.py mydata --data_path=datapath

2,修改config文件

打开second.pytorch/second/configs/car.lite.config 编辑类别与训练数据路径

train_input_reader: {...database_sampler {database_info_path: "/path/to/dataset_dbinfos_train.pkl"...}dataset: {dataset_class_name: "DATASET_NAME"kitti_info_path: "/path/to/dataset_infos_train.pkl"kitti_root_path: "DATASET_ROOT"}
}
...
eval_input_reader: {...dataset: {dataset_class_name: "DATASET_NAME"kitti_info_path: "/path/to/dataset_infos_val.pkl"kitti_root_path: "DATASET_ROOT"}
}

3,开始训练

单GPU:

python ./pytorch/train.py train --config_path=./configs/car.fhd.config --model_dir=/path/to/model_dir

多GPU:

CUDA_VISIBLE_DEVICES=0,1,3 python ./pytorch/train.py train --config_path=./configs/car.fhd.config --model_dir=/path/to/model_dir --multi_gpu=True

浮点16位训练: 

修改配置文件,将enable\u mixed\u precision设置为true。
(1)如果要训练新模型,请确保“/path/to/model\u dir”不存在。如果model\u dir不存在,将创建一个新目录,否则将读取其中的检查点。
(2)训练过程使用batchsize=6作为1080Ti的默认值,如果GPU内存较少,则需要减少batchsize。
(3)目前仅支持单个GPU训练,但训练一个模型在单个1080Ti中只需要20小时,并且只需要50个循环就可以达到78.3 AP,并在Kitti验证日期集中使用super converge in car Medium 3D。

 4,验证

 检测结果默认保存为:result.pkl,可设置--pickle_result=False,将结果保存为kitt标签格式

python ./pytorch/train.py evaluate --config_path=./configs/car.fhd.config --model_dir=/path/to/model_dir --measure_time=True --batch_size=1

5,训练自定义数据 

需要修改或者重写second.data.kitti_dataset以 @register_dataset   方式注册函数

训练时要修改eval.py,主要是自定义数据的类别等。

from pathlib import Path
import pickle
import time
from functools import partialimport numpy as npfrom second.core import box_np_ops
from second.core import preprocess as prep
from second.data import kitti_common as kitti
from second.utils.eval import get_coco_eval_result, get_official_eval_result
from second.data.dataset import Dataset, register_dataset
from second.utils.progress_bar import progress_bar_iter as prog_bar@register_dataset
class KittiDataset(Dataset):NumPointFeatures &#61; 4def __init__(self,root_path,info_path,class_names&#61;None,prep_func&#61;None,num_point_features&#61;None):assert info_path is not Nonewith open(info_path, &#39;rb&#39;) as f:infos &#61; pickle.load(f)self._root_path &#61; Path(root_path)self._kitti_infos &#61; infosprint("remain number of infos:", len(self._kitti_infos))self._class_names &#61; class_namesself._prep_func &#61; prep_funcdef __len__(self):return len(self._kitti_infos)def convert_detection_to_kitti_annos(self, detection):class_names &#61; self._class_namesdet_image_idxes &#61; [det["metadata"]["image_idx"] for det in detection]gt_image_idxes &#61; [info["image"]["image_idx"] for info in self._kitti_infos]annos &#61; []for i in range(len(detection)):det_idx &#61; det_image_idxes[i]det &#61; detection[i]# info &#61; self._kitti_infos[gt_image_idxes.index(det_idx)]info &#61; self._kitti_infos[i]calib &#61; info["calib"]rect &#61; calib["R0_rect"]Trv2c &#61; calib["Tr_velo_to_cam"]P2 &#61; calib["P2"]final_box_preds &#61; det["box3d_lidar"].detach().cpu().numpy()label_preds &#61; det["label_preds"].detach().cpu().numpy()scores &#61; det["scores"].detach().cpu().numpy()if final_box_preds.shape[0] !&#61; 0:final_box_preds[:, 2] -&#61; final_box_preds[:, 5] / 2box3d_camera &#61; box_np_ops.box_lidar_to_camera(final_box_preds, rect, Trv2c)locs &#61; box3d_camera[:, :3]dims &#61; box3d_camera[:, 3:6]angles &#61; box3d_camera[:, 6]camera_box_origin &#61; [0.5, 1.0, 0.5]box_corners &#61; box_np_ops.center_to_corner_box3d(locs, dims, angles, camera_box_origin, axis&#61;1)box_corners_in_image &#61; box_np_ops.project_to_image(box_corners, P2)# box_corners_in_image: [N, 8, 2]minxy &#61; np.min(box_corners_in_image, axis&#61;1)maxxy &#61; np.max(box_corners_in_image, axis&#61;1)bbox &#61; np.concatenate([minxy, maxxy], axis&#61;1)anno &#61; kitti.get_start_result_anno()num_example &#61; 0box3d_lidar &#61; final_box_predsfor j in range(box3d_lidar.shape[0]):image_shape &#61; info["image"]["image_shape"]if bbox[j, 0] > image_shape[1] or bbox[j, 1] > image_shape[0]:continueif bbox[j, 2] <0 or bbox[j, 3] <0:continuebbox[j, 2:] &#61; np.minimum(bbox[j, 2:], image_shape[::-1])bbox[j, :2] &#61; np.maximum(bbox[j, :2], [0, 0])anno["bbox"].append(bbox[j])# convert center format to kitti format# box3d_lidar[j, 2] -&#61; box3d_lidar[j, 5] / 2anno["alpha"].append(-np.arctan2(-box3d_lidar[j, 1], box3d_lidar[j, 0]) &#43;box3d_camera[j, 6])anno["dimensions"].append(box3d_camera[j, 3:6])anno["location"].append(box3d_camera[j, :3])anno["rotation_y"].append(box3d_camera[j, 6])anno["name"].append(class_names[int(label_preds[j])])anno["truncated"].append(0.0)anno["occluded"].append(0)anno["score"].append(scores[j])num_example &#43;&#61; 1if num_example !&#61; 0:anno &#61; {n: np.stack(v) for n, v in anno.items()}annos.append(anno)else:annos.append(kitti.empty_result_anno())num_example &#61; annos[-1]["name"].shape[0]annos[-1]["metadata"] &#61; det["metadata"]return annosdef evaluation(self, detections, output_dir):"""detectionWhen you want to eval your own dataset, you MUST set correctthe z axis and box z center.If you want to eval by my KITTI eval function, you must provide the correct format annotations.ground_truth_annotations format:{bbox: [N, 4], if you fill fake data, MUST HAVE >25 HEIGHT!!!!!!alpha: [N], you can use -10 to ignore it.occluded: [N], you can use zero.truncated: [N], you can use zero.name: [N]location: [N, 3] center of 3d box.dimensions: [N, 3] dim of 3d box.rotation_y: [N] angle.}all fields must be filled, but some fields can fillzero."""if "annos" not in self._kitti_infos[0]:return Nonegt_annos &#61; [info["annos"] for info in self._kitti_infos]dt_annos &#61; self.convert_detection_to_kitti_annos(detections)# firstly convert standard detection to kitti-format dt annosz_axis &#61; 1 # KITTI camera format use y as regular "z" axis.z_center &#61; 1.0 # KITTI camera box&#39;s center is [0.5, 1, 0.5]# for regular raw lidar data, z_axis &#61; 2, z_center &#61; 0.5.result_official_dict &#61; get_official_eval_result(gt_annos,dt_annos,self._class_names,z_axis&#61;z_axis,z_center&#61;z_center)result_coco &#61; get_coco_eval_result(gt_annos,dt_annos,self._class_names,z_axis&#61;z_axis,z_center&#61;z_center)return {"results": {"official": result_official_dict["result"],"coco": result_coco["result"],},"detail": {"eval.kitti": {"official": result_official_dict["detail"],"coco": result_coco["detail"]}},}def __getitem__(self, idx):input_dict &#61; self.get_sensor_data(idx)example &#61; self._prep_func(input_dict&#61;input_dict)example["metadata"] &#61; {}if "image_idx" in input_dict["metadata"]:example["metadata"] &#61; input_dict["metadata"]if "anchors_mask" in example:example["anchors_mask"] &#61; example["anchors_mask"].astype(np.uint8)return exampledef get_sensor_data(self, query):read_image &#61; Falseidx &#61; queryif isinstance(query, dict):read_image &#61; "cam" in queryassert "lidar" in queryidx &#61; query["lidar"]["idx"]info &#61; self._kitti_infos[idx]res &#61; {"lidar": {"type": "lidar","points": None,},"metadata": {"image_idx": info["image"]["image_idx"],"image_shape": info["image"]["image_shape"],},"calib": None,"cam": {}}pc_info &#61; info["point_cloud"]velo_path &#61; Path(pc_info[&#39;velodyne_path&#39;])if not velo_path.is_absolute():velo_path &#61; Path(self._root_path) / pc_info[&#39;velodyne_path&#39;]velo_reduced_path &#61; velo_path.parent.parent / (velo_path.parent.stem &#43; &#39;_reduced&#39;) / velo_path.nameif velo_reduced_path.exists():velo_path &#61; velo_reduced_pathpoints &#61; np.fromfile(str(velo_path), dtype&#61;np.float32,count&#61;-1).reshape([-1, self.NumPointFeatures])res["lidar"]["points"] &#61; pointsimage_info &#61; info["image"]image_path &#61; image_info[&#39;image_path&#39;]if read_image:image_path &#61; self._root_path / image_pathwith open(str(image_path), &#39;rb&#39;) as f:image_str &#61; f.read()res["cam"] &#61; {"type": "camera","data": image_str,"datatype": image_path.suffix[1:],}calib &#61; info["calib"]calib_dict &#61; {&#39;rect&#39;: calib[&#39;R0_rect&#39;],&#39;Trv2c&#39;: calib[&#39;Tr_velo_to_cam&#39;],&#39;P2&#39;: calib[&#39;P2&#39;],}res["calib"] &#61; calib_dictif &#39;annos&#39; in info:annos &#61; info[&#39;annos&#39;]# we need other objects to avoid collision when sampleannos &#61; kitti.remove_dontcare(annos)locs &#61; annos["location"]dims &#61; annos["dimensions"]rots &#61; annos["rotation_y"]gt_names &#61; annos["name"]# rots &#61; np.concatenate([np.zeros([locs.shape[0], 2], dtype&#61;np.float32), rots], axis&#61;1)gt_boxes &#61; np.concatenate([locs, dims, rots[..., np.newaxis]],axis&#61;1).astype(np.float32)calib &#61; info["calib"]gt_boxes &#61; box_np_ops.box_camera_to_lidar(gt_boxes, calib["R0_rect"], calib["Tr_velo_to_cam"])# only center format is allowed. so we need to convert# kitti [0.5, 0.5, 0] center to [0.5, 0.5, 0.5]box_np_ops.change_box3d_center_(gt_boxes, [0.5, 0.5, 0],[0.5, 0.5, 0.5])res["lidar"]["annotations"] &#61; {&#39;boxes&#39;: gt_boxes,&#39;names&#39;: gt_names,}res["cam"]["annotations"] &#61; {&#39;boxes&#39;: annos["bbox"],&#39;names&#39;: gt_names,}return resdef convert_to_kitti_info_version2(info):"""convert kitti info v1 to v2 if possible."""if "image" not in info or "calib" not in info or "point_cloud" not in info:info["image"] &#61; {&#39;image_shape&#39;: info["img_shape"],&#39;image_idx&#39;: info[&#39;image_idx&#39;],&#39;image_path&#39;: info[&#39;img_path&#39;],}info["calib"] &#61; {"R0_rect": info[&#39;calib/R0_rect&#39;],"Tr_velo_to_cam": info[&#39;calib/Tr_velo_to_cam&#39;],"P2": info[&#39;calib/P2&#39;],}info["point_cloud"] &#61; {"velodyne_path": info[&#39;velodyne_path&#39;],}def kitti_anno_to_label_file(annos, folder):folder &#61; Path(folder)for anno in annos:image_idx &#61; anno["metadata"]["image_idx"]label_lines &#61; []for j in range(anno["bbox"].shape[0]):label_dict &#61; {&#39;name&#39;: anno["name"][j],&#39;alpha&#39;: anno["alpha"][j],&#39;bbox&#39;: anno["bbox"][j],&#39;location&#39;: anno["location"][j],&#39;dimensions&#39;: anno["dimensions"][j],&#39;rotation_y&#39;: anno["rotation_y"][j],&#39;score&#39;: anno["score"][j],}label_line &#61; kitti.kitti_result_line(label_dict)label_lines.append(label_line)label_file &#61; folder / f"{kitti.get_image_index_str(image_idx)}.txt"label_str &#61; &#39;\n&#39;.join(label_lines)with open(label_file, &#39;w&#39;) as f:f.write(label_str)def _read_imageset_file(path):with open(path, &#39;r&#39;) as f:lines &#61; f.readlines()return [int(line) for line in lines]def _calculate_num_points_in_gt(data_path,infos,relative_path,remove_outside&#61;True,num_features&#61;4):for info in infos:pc_info &#61; info["point_cloud"]image_info &#61; info["image"]calib &#61; info["calib"]if relative_path:v_path &#61; str(Path(data_path) / pc_info["velodyne_path"])else:v_path &#61; pc_info["velodyne_path"]points_v &#61; np.fromfile(v_path, dtype&#61;np.float32, count&#61;-1).reshape([-1, num_features])rect &#61; calib[&#39;R0_rect&#39;]Trv2c &#61; calib[&#39;Tr_velo_to_cam&#39;]P2 &#61; calib[&#39;P2&#39;]if remove_outside:points_v &#61; box_np_ops.remove_outside_points(points_v, rect, Trv2c, P2, image_info["image_shape"])# points_v &#61; points_v[points_v[:, 0] > 0]annos &#61; info[&#39;annos&#39;]num_obj &#61; len([n for n in annos[&#39;name&#39;] if n !&#61; &#39;DontCare&#39;])# annos &#61; kitti.filter_kitti_anno(annos, [&#39;DontCare&#39;])dims &#61; annos[&#39;dimensions&#39;][:num_obj]loc &#61; annos[&#39;location&#39;][:num_obj]rots &#61; annos[&#39;rotation_y&#39;][:num_obj]gt_boxes_camera &#61; np.concatenate([loc, dims, rots[..., np.newaxis]],axis&#61;1)gt_boxes_lidar &#61; box_np_ops.box_camera_to_lidar(gt_boxes_camera, rect, Trv2c)indices &#61; box_np_ops.points_in_rbbox(points_v[:, :3], gt_boxes_lidar)num_points_in_gt &#61; indices.sum(0)num_ignored &#61; len(annos[&#39;dimensions&#39;]) - num_objnum_points_in_gt &#61; np.concatenate([num_points_in_gt, -np.ones([num_ignored])])annos["num_points_in_gt"] &#61; num_points_in_gt.astype(np.int32)def create_kitti_info_file(data_path, save_path&#61;None, relative_path&#61;True):imageset_folder &#61; Path(__file__).resolve().parent / "ImageSets"train_img_ids &#61; _read_imageset_file(str(imageset_folder / "train.txt"))val_img_ids &#61; _read_imageset_file(str(imageset_folder / "val.txt"))test_img_ids &#61; _read_imageset_file(str(imageset_folder / "test.txt"))print("Generate info. this may take several minutes.")if save_path is None:save_path &#61; Path(data_path)else:save_path &#61; Path(save_path)kitti_infos_train &#61; kitti.get_kitti_image_info(data_path,training&#61;True,velodyne&#61;True,calib&#61;True,image_ids&#61;train_img_ids,relative_path&#61;relative_path)_calculate_num_points_in_gt(data_path, kitti_infos_train, relative_path)filename &#61; save_path / &#39;kitti_infos_train.pkl&#39;print(f"Kitti info train file is saved to {filename}")with open(filename, &#39;wb&#39;) as f:pickle.dump(kitti_infos_train, f)kitti_infos_val &#61; kitti.get_kitti_image_info(data_path,training&#61;True,velodyne&#61;True,calib&#61;True,image_ids&#61;val_img_ids,relative_path&#61;relative_path)_calculate_num_points_in_gt(data_path, kitti_infos_val, relative_path)filename &#61; save_path / &#39;kitti_infos_val.pkl&#39;print(f"Kitti info val file is saved to {filename}")with open(filename, &#39;wb&#39;) as f:pickle.dump(kitti_infos_val, f)filename &#61; save_path / &#39;kitti_infos_trainval.pkl&#39;print(f"Kitti info trainval file is saved to {filename}")with open(filename, &#39;wb&#39;) as f:pickle.dump(kitti_infos_train &#43; kitti_infos_val, f)kitti_infos_test &#61; kitti.get_kitti_image_info(data_path,training&#61;False,label_info&#61;False,velodyne&#61;True,calib&#61;True,image_ids&#61;test_img_ids,relative_path&#61;relative_path)filename &#61; save_path / &#39;kitti_infos_test.pkl&#39;print(f"Kitti info test file is saved to {filename}")with open(filename, &#39;wb&#39;) as f:pickle.dump(kitti_infos_test, f)def _create_reduced_point_cloud(data_path,info_path,save_path&#61;None,back&#61;False):with open(info_path, &#39;rb&#39;) as f:kitti_infos &#61; pickle.load(f)for info in prog_bar(kitti_infos):pc_info &#61; info["point_cloud"]image_info &#61; info["image"]calib &#61; info["calib"]v_path &#61; pc_info[&#39;velodyne_path&#39;]v_path &#61; Path(data_path) / v_pathpoints_v &#61; np.fromfile(str(v_path), dtype&#61;np.float32, count&#61;-1).reshape([-1, 4])rect &#61; calib[&#39;R0_rect&#39;]P2 &#61; calib[&#39;P2&#39;]Trv2c &#61; calib[&#39;Tr_velo_to_cam&#39;]# first remove z <0 points# keep &#61; points_v[:, -1] > 0# points_v &#61; points_v[keep]# then remove outside.if back:points_v[:, 0] &#61; -points_v[:, 0]points_v &#61; box_np_ops.remove_outside_points(points_v, rect, Trv2c, P2,image_info["image_shape"])if save_path is None:save_filename &#61; v_path.parent.parent / (v_path.parent.stem &#43; "_reduced") / v_path.name# save_filename &#61; str(v_path) &#43; &#39;_reduced&#39;if back:save_filename &#43;&#61; "_back"else:save_filename &#61; str(Path(save_path) / v_path.name)if back:save_filename &#43;&#61; "_back"with open(save_filename, &#39;w&#39;) as f:points_v.tofile(f)def create_reduced_point_cloud(data_path,train_info_path&#61;None,val_info_path&#61;None,test_info_path&#61;None,save_path&#61;None,with_back&#61;False):if train_info_path is None:train_info_path &#61; Path(data_path) / &#39;kitti_infos_train.pkl&#39;if val_info_path is None:val_info_path &#61; Path(data_path) / &#39;kitti_infos_val.pkl&#39;if test_info_path is None:test_info_path &#61; Path(data_path) / &#39;kitti_infos_test.pkl&#39;_create_reduced_point_cloud(data_path, train_info_path, save_path)_create_reduced_point_cloud(data_path, val_info_path, save_path)_create_reduced_point_cloud(data_path, test_info_path, save_path)if with_back:_create_reduced_point_cloud(data_path, train_info_path, save_path, back&#61;True)_create_reduced_point_cloud(data_path, val_info_path, save_path, back&#61;True)_create_reduced_point_cloud(data_path, test_info_path, save_path, back&#61;True)if __name__ &#61;&#61; "__main__":fire.Fire()

修改second.utils.eval   class_to_name &#61; {
        0: &#39;Car&#39;,
        1: &#39;Pedestrian&#39;,
        2: &#39;Cyclist&#39;,
        3: &#39;Van&#39;,
        4: &#39;Person_sitting&#39;,
        5: &#39;car&#39;,
        6: &#39;tractor&#39;,
        7: &#39;trailer&#39;,
    }

def get_official_eval_result(gt_annos,dt_annos,current_classes,difficultys&#61;[0, 1, 2],z_axis&#61;1,z_center&#61;1.0):"""gt_annos and dt_annos must contains following keys:[bbox, location, dimensions, rotation_y, score]"""overlap_mod &#61; np.array([[0.7, 0.5, 0.5, 0.7, 0.5, 0.7, 0.7, 0.7],[0.7, 0.5, 0.5, 0.7, 0.5, 0.7, 0.7, 0.7],[0.7, 0.5, 0.5, 0.7, 0.5, 0.7, 0.7, 0.7]])overlap_easy &#61; np.array([[0.7, 0.5, 0.5, 0.7, 0.5, 0.5, 0.5, 0.5],[0.5, 0.25, 0.25, 0.5, 0.25, 0.5, 0.5, 0.5],[0.5, 0.25, 0.25, 0.5, 0.25, 0.5, 0.5, 0.5]])min_overlaps &#61; np.stack([overlap_mod, overlap_easy], axis&#61;0) # [2, 3, 5]class_to_name &#61; {0: &#39;Car&#39;,1: &#39;Pedestrian&#39;,2: &#39;Cyclist&#39;,3: &#39;Van&#39;,4: &#39;Person_sitting&#39;,5: &#39;car&#39;,6: &#39;tractor&#39;,7: &#39;trailer&#39;,}name_to_class &#61; {v: n for n, v in class_to_name.items()}if not isinstance(current_classes, (list, tuple)):current_classes &#61; [current_classes]current_classes_int &#61; []for curcls in current_classes:if isinstance(curcls, str):current_classes_int.append(name_to_class[curcls])else:current_classes_int.append(curcls)current_classes &#61; current_classes_intmin_overlaps &#61; min_overlaps[:, :, current_classes]result &#61; &#39;&#39;# check whether alpha is validcompute_aos &#61; Falsefor anno in dt_annos:if anno[&#39;alpha&#39;].shape[0] !&#61; 0:if anno[&#39;alpha&#39;][0] !&#61; -10:compute_aos &#61; Truebreakmetrics &#61; do_eval_v3(gt_annos,dt_annos,current_classes,min_overlaps,compute_aos,difficultys,z_axis&#61;z_axis,z_center&#61;z_center)detail &#61; {}for j, curcls in enumerate(current_classes):# mAP threshold array: [num_minoverlap, metric, class]# mAP result: [num_class, num_diff, num_minoverlap]class_name &#61; class_to_name[curcls]detail[class_name] &#61; {}for i in range(min_overlaps.shape[0]):mAPbbox &#61; get_mAP(metrics["bbox"]["precision"][j, :, i])mAPbev &#61; get_mAP(metrics["bev"]["precision"][j, :, i])mAP3d &#61; get_mAP(metrics["3d"]["precision"][j, :, i])detail[class_name][f"bbox&#64;{min_overlaps[i, 0, j]:.2f}"] &#61; mAPbbox.tolist()detail[class_name][f"bev&#64;{min_overlaps[i, 1, j]:.2f}"] &#61; mAPbev.tolist()detail[class_name][f"3d&#64;{min_overlaps[i, 2, j]:.2f}"] &#61; mAP3d.tolist()result &#43;&#61; print_str((f"{class_to_name[curcls]} ""AP(Average Precision)&#64;{:.2f}, {:.2f}, {:.2f}:".format(*min_overlaps[i, :, j])))mAPbbox &#61; ", ".join(f"{v:.2f}" for v in mAPbbox)mAPbev &#61; ", ".join(f"{v:.2f}" for v in mAPbev)mAP3d &#61; ", ".join(f"{v:.2f}" for v in mAP3d)result &#43;&#61; print_str(f"bbox AP:{mAPbbox}")result &#43;&#61; print_str(f"bev AP:{mAPbev}")result &#43;&#61; print_str(f"3d AP:{mAP3d}")if compute_aos:mAPaos &#61; get_mAP(metrics["bbox"]["orientation"][j, :, i])detail[class_name][f"aos"] &#61; mAPaos.tolist()mAPaos &#61; ", ".join(f"{v:.2f}" for v in mAPaos)result &#43;&#61; print_str(f"aos AP:{mAPaos}")return {"result": result,"detail": detail,}


推荐阅读
  • 本文详细解析了Python中的os和sys模块,介绍了它们的功能、常用方法及其在实际编程中的应用。 ... [详细]
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • DNN Community 和 Professional 版本的主要差异
    本文详细解析了 DotNetNuke (DNN) 的两种主要版本:Community 和 Professional。通过对比两者的功能和附加组件,帮助用户选择最适合其需求的版本。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 本文介绍了如何通过 Maven 依赖引入 SQLiteJDBC 和 HikariCP 包,从而在 Java 应用中高效地连接和操作 SQLite 数据库。文章提供了详细的代码示例,并解释了每个步骤的实现细节。 ... [详细]
  • 使用Vultr云服务器和Namesilo域名搭建个人网站
    本文详细介绍了如何通过Vultr云服务器和Namesilo域名搭建一个功能齐全的个人网站,包括购买、配置服务器以及绑定域名的具体步骤。文章还提供了详细的命令行操作指南,帮助读者顺利完成建站过程。 ... [详细]
  • 实体映射最强工具类:MapStruct真香 ... [详细]
  • 本文介绍如何在现有网络中部署基于Linux系统的透明防火墙(网桥模式),以实现灵活的时间段控制、流量限制等功能。通过详细的步骤和配置说明,确保内部网络的安全性和稳定性。 ... [详细]
  • 优化局域网SSH连接延迟问题的解决方案
    本文介绍了解决局域网内SSH连接到服务器时出现长时间等待问题的方法。通过调整配置和优化网络设置,可以显著缩短SSH连接的时间。 ... [详细]
  • 本文介绍如何在Linux Mint系统上搭建Rust开发环境,包括安装IntelliJ IDEA、Rust工具链及必要的插件。通过详细步骤,帮助开发者快速上手。 ... [详细]
  • 深入理解Redis的数据结构与对象系统
    本文详细探讨了Redis中的数据结构和对象系统的实现,包括字符串、列表、集合、哈希表和有序集合等五种核心对象类型,以及它们所使用的底层数据结构。通过分析源码和相关文献,帮助读者更好地理解Redis的设计原理。 ... [详细]
  • 配置多VLAN环境下的透明SQUID代理
    本文介绍如何在包含多个VLAN的网络环境中配置SQUID作为透明网关。网络拓扑包括Cisco 3750交换机、PANABIT防火墙和SQUID服务器,所有设备均部署在ESXi虚拟化平台上。 ... [详细]
  • Hadoop发行版本选择指南:技术解析与应用实践
    本文详细介绍了Hadoop的不同发行版本及其特点,帮助读者根据实际需求选择最合适的Hadoop版本。内容涵盖Apache Hadoop、Cloudera CDH等主流版本的特性及应用场景。 ... [详细]
  • 本文介绍如何使用MFC和ADO技术调用SQL Server中的存储过程,以查询指定小区在特定时间段内的通话统计数据。通过用户界面选择小区ID、开始时间和结束时间,系统将计算并展示小时级的通话量、拥塞率及半速率通话比例。 ... [详细]
  • 本文探讨了如何通过预处理器开关选择不同的类实现,并解决在特定情况下遇到的链接器错误。 ... [详细]
author-avatar
this_is_me活在自己小世界
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有