热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

(转)c/c++内存机制(一)

原文:http:www.cnblogs.comComputerGarchive201202012334898.html一:C语言中的内存机制在C语言中&

原文:http://www.cnblogs.com/ComputerG/archive/2012/02/01/2334898.html

一:C语言中的内存机制

在C语言中,内存主要分为如下5个存储区:

(1)栈(Stack):位于函数内的局部变量(包括函数实参),由编译器负责分配释放,函数结束,栈变量失效。

(2)堆(Heap):由程序员用malloc/calloc/realloc分配,free释放。如果程序员忘记free了,则会造成内存泄露,程序结束时该片内存会由OS回收。

(3)全局区/静态区(Global Static Area): 全局变量和静态变量存放区,程序一经编译好,该区域便存在。并且在C语言中初始化的全局变量和静态变量和未初始化的放在相邻的两个区域(在C++中,由于全局变量和静态变量编译器会给这些变量自动初始化赋值,所以没有区分了)。由于全局变量一直占据内存空间且不易维护,推荐少用。程序结束时释放。

(4)C风格字符串常量存储区: 专门存放字符串常量的地方,程序结束时释放

(5)程序代码区:存放程序二进制代码的区域


:C++中的内存机制

在C++语言中,与C类似,不过也有所不同,内存主要分为如下5个存储区:

(1)栈(Stack):位于函数内的局部变量(包括函数实参),由编译器负责分配释放,函数结束,栈变量失效。

(2)堆(Heap):这里与C不同的是,该堆是由new申请的内存,由delete或delete[]负责释放

(3)自由存储区(Free Storage):由程序员用malloc/calloc/realloc分配,free释放。如果程序员忘记free了,则会造成内存泄露,程序结束时该片内存会由OS回收。

(4)全局区/静态区(Global Static Area): 全局变量和静态变量存放区,程序一经编译好,该区域便存在。在C++中,由于全局变量和静态变量编译器会给这些变量自动初始化赋值,所以没有区分了初始化变量和未初始化变量了。由于全局变量一直占据内存空间且不易维护,推荐少用。程序结束时释放。

(5)常量存储区: 这是一块比较特殊的存储区,专门存储不能修改的常量(如果采用非正常手段更改当然也是可以的了)。


:堆和栈的区别

3.1 栈(Stack)

    具体的讲,现代计算机(冯诺依曼串行执行机制),都直接在代码低层支持栈的数据结构。这体现在有专门的寄存器指向栈所在的地址(SS,堆栈段寄存器,存放堆栈段地址);有专门的机器指令完成数据入栈出栈的操作(汇编中有PUSH和POP指令)。

    这种机制的特点是效率高,但支持数据的数据有限,一般是整数、指针、浮点数等系统直接支持的数据类型,并不直接支持其他的数据结构(可以自定义栈结构支持多种数据类型)。因为栈的这种特点,对栈的使用在程序中是非常频繁的 。对子程序的调用就是直接利用栈完成的。机器的call指令里隐含了把返回地址入栈,然后跳转至子程序地址的操作,而子程序的ret指令则隐含从堆栈中弹出返回地址并跳转之的操作。

    C/C++中的函数自动变量就是直接使用栈的例子,这也就是为什么当函数返回时,该函数的自动变量自动失效的原因,因而要避免返回栈内存和栈引用,以免内存泄露。

3.2 堆(Heap)

    和栈不同的是,堆得数据结构并不是由系统(无论是机器硬件系统还是操作系统)支持的,而是由函数库提供的。基本的malloc/calloc/realloc/free函数维护了一套内部的堆数据结构(在C++中则增加了new/delete维护)。

    当程序用这些函数去获得新的内存空间时,这套函数首先试图从内部堆中寻找可用的内存空间(常见内存分配算法有:首次适应算法、循环首次适应算法、最佳适应算法和最差适应算法等。os的基本内容!!)。如果没有可用的内存空间,则试图利用系统调用来动态增加程序数据段的内存大小,新分配得到的空间首先被组织进内部堆中去,然后再以适当的形式返回给调用者。当程序释放分配的内存空间时,这片内存空间被返回到内部堆结构中,可能会被适当的处理(比如空闲空间合并成更大的空闲空间),以更适合下一次内存分配申请。 这套复杂的分配机制实际上相当于一个内存分配的缓冲池(Cache),使用这套机制有如下几个原因:

(1)系统调用可能不支持任意大小的内存分配。有些系统的系统调用只支持固定大小及其倍数的内存请求(按页分配);这样的话对于大量的小内存分配来说会造成浪费。

(2)系统调用申请内存可能是代价昂贵的。 系统调用可能涉及到用户态和核心态的转换。

(3)没有管理的内存分配在大量复杂内存的分配释放操作下很容易造成内存碎片。

3.3 栈和堆的对比

从以上介绍中,它们有如下区别:

(1)栈是系统提供的功能,特点是快速高效,缺点是由限制,数据不灵活;

       堆是函数库提供的功能,特点是灵活方便,数据适应面广,但是效率有一定降低。

(2)栈是系统数据结构,对于进程/线程是唯一的;

       堆是函数库内部数据结构,不一定唯一,不同堆分配的内存无法互相操作。

(3)栈空间分静态分配和动态分配,一般由编译器完成静态分配,自动释放,栈的动态分配是不被鼓励的;

       堆得分配总是动态的,虽然程序结束时所有的数据空间都会被释放回系统,但是精确的申请内存/释放内存匹配是良好程序的基本要素。

(4)碎片问题

    对于堆来讲,频繁的new/delete等操作势必会造成内存空间的不连续,从而造成大量的碎片,使程序的效率降低;对于栈来讲,则不会存在这个问题,因为栈是后进先出(LIFO)的队列。

(5)生长方向

    堆的生长方向是向上的,也就是向这内存地址增加的方向;对于栈来讲,生长方向却是向下的,是向着内存地址减少的方向增长。

(6)分配方式

      堆都是动态分配的,没有静态分配的堆;

      栈有两种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配则由alloca函数进行分配,但是栈的动态分配和堆不同,它的动态分配是由编译器进行释放,无需我们手工实现。

(7)分配效率

      栈是机器系统提供的数据结构,计算机在底层提供支持,分配有专门的堆栈段寄存器,入栈出栈有专门的机器指令,这些都决定了栈的高效率执行。

      堆是由C/C++函数库提供的,机制比较复杂,有不同的分配算法,易产生内存碎片,需要对内存进行各种管理,效率比栈要低很多。


:具体实例分析

例子(一)

看下面的一小段C程序,仔细体会各种内存分配机制。

int a = 0; //全局初始化区,a的值为0

char *p1; //全局未初始化区(C++中则初始化为NULL)

int main()

{

int b; //b分配在栈上,整型

char s[] = "abc"; //s分配在栈上,char *类型;"abc\0"分配在栈上,运行时赋值,函数结束销毁

char *p2; //p2分配在栈上,未初始化

char *p3 = "123456"; //p3指向"123456"分配在字符串常量存储区的地址,编译时确定

static int c = 0; //c在全局(静态)初始化区,可以多次跨函数调用而保持原值

p1 = (char *)malloc(10); //p1在全局未初始化区,指向分配得来得10字节的堆区地址

p2 = (char *)malloc(20); //p2指向分配得来得20字节的堆区地址

strcpy(p1, "123456"); //"123456"放在字符串常量存储区,编译器可能会将它与p3所指向的"123456"优化成一块

return 0;

}

例子(二)

看下面的一小段代码,体会堆与栈的区别:

int foo()

{

//其余代码

int *p = new int[5];

//其余代码

return 0;

}

    其中的语句int *p = new int[5];就包含了堆与栈。其中new关键字分配了一块堆内存,而指针p本身所占得内存为栈内存(一般4个字节表示地址)。这句话的意思是在栈内存中存放了一个指向一块堆内存的指针p。在程序中先确定在堆中分配内存的大小,然后调用new关键字分配内存,最后返回这块内存首址,放入栈中。汇编代码为:

int foo()

{

008C1520 push ebp

008C1521 mov ebp,esp

008C1523 sub esp,0D8h

008C1529 push ebx

008C152A push esi

008C152B push edi

008C152C lea edi,[ebp-0D8h]

008C1532 mov ecx,36h

008C1537 mov eax,0CCCCCCCCh

008C153C rep stos dword ptr es:[edi]

int *p = new int[5];

008C153E push 14h

008C1540 call operator new[] (8C1258h)

008C1545 add esp,4

008C1548 mov dword ptr [ebp-0D4h],eax

008C154E mov eax,dword ptr [ebp-0D4h]

008C1554 mov dword ptr [p],eax

return 0;

008C1557 xor eax,eax

}

008C1559 pop edi

008C155A pop esi

008C155B pop ebx

008C155C add esp,0D8h

008C1562 cmp ebp,esp

008C1564 call @ILT+395(__RTC_CheckEsp) (8C1190h)

008C1569 mov esp,ebp

008C156B pop ebp

008C156C ret

    如果需要释放内存,这里我们需要使用delete[] p,告诉编译器,我要删除的是一个数组。

例子(三)

看下面的一小段代码,试着找出其中的错误:

#include

using namespace std;

int main()

{

char a[] = "Hello"; // 分配在栈上

a[0] = 'X';

cout <

char *p &#61; "World"; // 分配在字符串常量存储区的地址

p[0] &#61; &#39;X&#39;;

cout <

return 0;

}

    发现问题了吗&#xff1f;是的&#xff0c;字符数组a的容量是6个字符&#xff0c;其内容为"hello\0"。a的内容时可以改变的&#xff0c;比如a[0]&#61;&#39;X&#39;&#xff0c;因为其是在栈上分配的&#xff0c;也就是在运行时确定的内容。但是指针p指向的字符串"world"分配在字符串常量存储区&#xff0c;内容为"world\0"&#xff0c;常量字符串的内容时不可以修改的。从语法上来说&#xff0c;编译器并不觉得语句p[0]&#61;&#39;X&#39;有什么问题&#xff0c;但是在运行时则会出现"access violation"非法内存访问的问题。

以下几个函数的变化要看清楚了&#xff1a;吐舌笑脸

char *GetString1(void)

{

char p[] &#61; "hello,world"; //结果&#xff1a;h。由于数组指针指向第一元素的地址&#xff0c;所以调用之后是h

return p;

}

char *GetString2(void)

{

char *p &#61; "hello,world"; //结果&#xff1a;hello,world。由于p指向“hello,world”字符串常量区域地址

return p;

}

char *GetString3(void)

{

char *p &#61; (char *)malloc(20); // 指向p所分配的堆上的内存空间。

return p;

}

char *GetString4(void)

{

char *p &#61; new char[20]; // 指向p所分配的内存空间,p本身在栈上的&#xff0c;p所指向的空间是堆上的。

return p;

}


附录&#xff1a;内存管理注意事项太阳

【规则1】用malloc或new申请内存之后&#xff0c;应该立即检查指针值是否为NULL&#xff0c;防止使用指针值为NULL的内存&#xff0c;可以在函数入口处断言检测。

【规则2】不要忘记为数组或动态内存赋初值&#xff08;比如calloc比malloc就要好&#xff09;&#xff0c;指针初始化为NULL(c&#43;&#43;中为0)。

【规则3】避免数组或指针下标越界&#xff0c;特别太阳当心发生“多1”或者"少1"太阳的操作。

【规则4】动态内存的申请和释放必须配对&#xff0c;防止内存泄露&#xff0c;具体为malloc/calloc/realloc和free配对,new和delete以及delete[]配对。

【规则5】用free或者delete释放内存后&#xff0c;应立即将指针设置为NULL(C&#43;&#43;中为0)&#xff0c;防止产生“野指针”、"悬垂指针"。

【规则6】遇到不懂得问题及时debug&#xff0c;一般的虫子灯泡debug一下就灰飞烟灭了&#xff0c;一切bug都是浮云而已。




推荐阅读
  • 问题描述现在,不管开发一个多大的系统(至少我现在的部门是这样的),都会带一个日志功能;在实际开发过程中 ... [详细]
  • 在尝试加载支持推送通知的iOS应用程序的Ad Hoc构建时,遇到了‘no valid aps-environment entitlement found for application’的错误提示。本文将探讨此错误的原因及多种可能的解决方案。 ... [详细]
  • egg实现登录鉴权(七):权限管理
    权限管理包含三部分:访问页面的权限,操作功能的权限和获取数据权限。页面权限:登录用户所属角色的可访问页面的权限功能权限:登录用户所属角色的可访问页面的操作权限数据权限:登录用户所属 ... [详细]
  • 本文探讨了Linux环境下线程私有数据(Thread-Specific Data, TSD)的概念及其重要性,介绍了如何通过TSD技术避免多线程间全局变量冲突的问题,并提供了具体的实现方法和示例代码。 ... [详细]
  • 本文探讨了互联网服务提供商(ISP)如何可能篡改或插入用户请求的数据流,并提供了有效的技术手段来防止此类劫持行为,确保网络环境的安全与纯净。 ... [详细]
  • 探讨了一个包含纯虚函数的C++代码片段,分析了其中的语法错误及逻辑问题,并提出了修正方案。 ... [详细]
  • 本文探讨了如何在 Spring MVC 框架下,通过自定义注解和拦截器机制来实现细粒度的权限管理功能。 ... [详细]
  • 利用Node.js实现PSD文件的高效切图
    本文介绍了如何通过Node.js及其psd2json模块,快速实现PSD文件的自动化切图过程,以适应项目中频繁的界面更新需求。此方法不仅提高了工作效率,还简化了从设计稿到实际应用的转换流程。 ... [详细]
  • hlg_oj_1116_选美大赛这题是最长子序列,然后再求出路径就可以了。开始写的比较乱,用数组什么的,后来用了指针就好办了。现在把代码贴 ... [详细]
  • 本文探讨了如何在PHP与MySQL环境中实现高效的分页查询,包括基本的分页实现、性能优化技巧以及高级的分页策略。 ... [详细]
  • 在CentOS 7中部署Nginx并配置SSL证书
    本文详细介绍了如何在CentOS 7操作系统上安装Nginx服务器,并配置SSL证书以增强网站的安全性。适合初学者和中级用户参考。 ... [详细]
  • 本文针对HDU 1042 N! 问题提供详细的解析和代码实现。题目要求计算给定整数N(0 ≤ N ≤ 10000)的阶乘N!。文章不仅提供了算法思路,还附上了C++语言的具体实现。 ... [详细]
  • 本文介绍了使用Python和C语言编写程序来计算一个给定数值的平方根的方法。通过迭代算法,我们能够精确地得到所需的结果。 ... [详细]
  • LeetCode 102 - 二叉树层次遍历详解
    本文详细解析了LeetCode第102题——二叉树的层次遍历问题,提供了C++语言的实现代码,并对算法的核心思想和具体步骤进行了深入讲解。 ... [详细]
  • 本文探讨了程序员这一职业的本质,认为他们是专注于问题解决的专业人士。文章深入分析了他们的日常工作状态、个人品质以及面对挑战时的态度,强调了编程不仅是一项技术活动,更是个人成长和精神修炼的过程。 ... [详细]
author-avatar
聆听最遥远的歌声
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有