热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【转载】InsightFace算法学习

转自:https:blog.csdn.netlinghu8812articledetails103403231 开源仓库InsightFace:https:github.comde

转自:https://blog.csdn.net/linghu8812/article/details/103403231

 


开源仓库

InsightFace: https://github.com/deepinsight/insightface
作者演讲:https://www.bilibili.com/video/av54356295?t=785
测试demo:https://www.bilibili.com/video/av79544654



识别算法配置

1. 安装mxnet

pip install mxnet-cu80 #or mxnet-cu90 or mxnet-cu100

2. 下载insightface算法仓库

git clone --recursive https://github.com/deepinsight/insightface.git

3. 下载(MS1MV2-Arcface)数据集

数据集下载地址在:https://pan.baidu.com/s/1S6LJZGdqcZRle1vlcMzHOQ,数据集里包含以下内容

faces_emore/
train.idx
train.rec
property
lfw.bin
cfp_ff.bin
cfp_fp.bin
agedb_30.bin
calfw.bin
cplfw.bin
vgg2_fp.bin

4. 复制配置文件

cp sample_config.py config.py
vim config.py # edit dataset path etc..

如果后面需要Fine Tune模型,需要将config.py的config.ckpt_embedding这一行的值改为False,这样可以保存网络的fc7层的权重,否则不会保存,不保存就会从头开始重新训练。
可选:将config.py文件中的这一行dataset.emore.val_targets = ['lfw', 'cfp_fp', 'agedb_30']修改为:dataset.emore.val_targets = ['lfw', 'cfp_ff', 'cfp_fp', 'agedb_30'],在训练评估时可以同时评估cpf_ff数据集,想看模型在该数据集上的准确率可以加上,该数据集上的准确率与LFW的准确率接近。


5. 配置环境变量

export MXNET_CPU_WORKER_NTHREADS=24
export MXNET_ENGINE_TYPE=ThreadedEnginePerDevice

 


模型训练

在训练前先确定模型训练的学习率,测试一下学习率为0.1,0.01和0.005等条件下的训练速度,选择准确率增长较快的学习率进行训练!!!
1. 训练命令

训练LResNet100E-IR网络,损失函数为ArcFace。
CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network r100 --loss arcface --dataset emore
1
训练LResNet50E-IR网络,损失函数为CosineFace。
CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network r50 --loss cosface --dataset emore
1
训练MobileFaceNet网络,损失函数为Softmax。
CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network y1 --loss softmax --dataset emore
1
Fine tune MobileFaceNet网络, 损失函数改为Triplet loss。
CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network mnas05 --loss triplet --lr 0.005 --pretrained ./models/y1-softmax-emore,1
1
多GPU训练可以使用train_parall.py文件进行多GPU加速。
作者的训练配置如下所示:每张卡上的batch size为128,共使用4张卡进行训练,故batch size为512。

Namespace(batch_size=512, beta=1000.0, beta_freeze=0, beta_min=5.0, bn_mom=0.9, ckpt=1, ctx_num=4, cutoff=0, data_dir='/cache/jiaguo/faces_ms1mi_112x112', easy_margin=0, emb_size=512, end_epoch=100000, fc7_wd_mult=1.0, gamma=0.12, image_channel=3, image_h=112, image_w=112, loss_type=5, lr=0.1, lr_steps='100000,140000,160000', margin=4, margin_a=1.0, margin_b=0.2, margin_m=0.3, margin_s=64.0, max_steps=0, mom=0.9, network='r100', num_classes=85742, num_layers=100, per_batch_size=128, power=1.0, prefix='../models2/model-r100-ii/model', pretrained='', rand_mirror=1, rescale_threshold=0, scale=0.9993, target='lfw,cfp_fp,agedb_30', use_deformable=0, verbose=2000, version_act='prelu', version_input=1, version_output='E', version_se=0, version_unit=3, wd=0.0005)
1
2. 训练结果

作者在LFW、CFP和AgeDB30数据集上得到的训练结果如下所示:

testing verification..
(12000, 512)
infer time 21.69233
[lfw][168000]XNorm: 22.172497
[lfw][168000]Accuracy-Flip: 0.99783+-0.00269
testing verification..
(14000, 512)
infer time 24.988244
[cfp_fp][168000]XNorm: 21.383092
[cfp_fp][168000]Accuracy-Flip: 0.98271+-0.00569
testing verification..
(12000, 512)
infer time 21.44195
[agedb_30][168000]XNorm: 22.695239
[agedb_30][168000]Accuracy-Flip: 0.98233+-0.00716
[168000]Accuracy-Highest: 0.98283
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
模型评估
1. MegaFace数据集评估

需要安装的依赖项:

tbb2 opencv2.4
1
如果高版本cuda不支持opencv2.4,将FindCUDA.cmake替换为最新版的FindCUDA.cmake,如果不支持compute_20,将OpenCVDetectCUDA.cmake替换为最新版的OpenCVDetectCUDA.cmake,
下载MegaFace的评估工具devkit.tar.gz,
从网盘中下载MegaFace测试数据megaface_testpack_v1.0.zip,解压后文件夹中包含的数据有

facescrub_images/
megaface_images/
facescrub_lst
facescrub_lst_all
facescrub_noises.txt
facescrub_noises_empty.txt
megaface_lst
megaface_noises.txt
megaface_noises_empty.txt
1
2
3
4
5
6
7
8
9
在工程的./Evaluation/Megaface/文件夹中,运行./run.sh文件,测试模型在MegaFace数据集上的识别精度。运行./run.sh前,先修改devkit的路径DEVKIT,将DEVKIT="/raid5data/dplearn/megaface/devkit/experiments"改为devkit/experiments实际所在的位置,修改后,可以得到模型在MegaFace数据集上的识别精度,测试模型需要花费较长时间。

Done matching! Score matrix size: 3530 1000000
Saving to ../../mx_results/otherFiles/facescrub_megaface_r100ii_1000000_1.bin
Computing test results with 1000000 images for set 1
Loaded 3530 probes spanning 80 classes
Loading from ../../mx_results/otherFiles/facescrub_facescrub_r100ii.bin
Probe score matrix size: 3530 3530
distractor score matrix size: 3530 1000000
Done loading. Time to compute some stats!
Finding top distractors!
Done sorting distractor scores
Making gallery!
Done Making Gallery!
Allocating ranks (1000080)
Rank 1: 0.983584
1
2
3
4
5
6
7
8
9
10
11
12
13
14
2. LFW, CFP, AgeDB数据集评估

进入./recognition/eval/文件夹,输入以下命令,使用verification.py文件进行评估。需要指定模型所在的文件夹和评估数据所在的文件夹。

python verification.py --model ../../models/model-r100-ii/model --data-dir ../../datasets/faces_emore/
1
得到的结果如下所示:

(12000, 512)
infer time 108.986159
[lfw]XNorm: 22.132480
[lfw]Accuracy: 0.00000+-0.00000
[lfw]Accuracy-Flip: 0.99767+-0.00281
Max of [lfw] is 0.99767
testing verification..
(14000, 512)
infer time 121.617964
[cfp_ff]XNorm: 21.077436
[cfp_ff]Accuracy: 0.00000+-0.00000
[cfp_ff]Accuracy-Flip: 0.99843+-0.00162
Max of [cfp_ff] is 0.99843
testing verification..
(14000, 512)
infer time 122.128096
[cfp_fp]XNorm: 21.340035
[cfp_fp]Accuracy: 0.00000+-0.00000
[cfp_fp]Accuracy-Flip: 0.98271+-0.00559
Max of [cfp_fp] is 0.98271
testing verification..
(12000, 512)
infer time 104.282227
[agedb_30]XNorm: 22.654594
[agedb_30]Accuracy: 0.00000+-0.00000
[agedb_30]Accuracy-Flip: 0.98250+-0.00712
Max of [agedb_30] is 0.98250
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
人脸识别为一分类网络,insight face训练先在大数据集上使用ArcFace损失函数做分类训练,然后再使用Triplet损失函数进行微调提高识别精度。
评估结果
1. 作者开源模型

模型
LFW CFP-FF CFP-FP AgeDB-30 MegaFace
LResNet100E-IR
99.77
99.84
98.27
98.25
98.35
LResNet50E-IR
99.80
99.83
92.17
97.70
97.26
LResNet34E-IR
99.67
99.83
90.71
97.63
96.09
MobileFaceNet
99.45
99.49
89.77
95.72
88.63
2. 基于MS1M-ArcFace训练模型

模型
LFW CFP-FF CFP-FP AgeDB-30 MegaFace
MobileFaceNet*
99.52
99.44
94.24
96.23
90.51
相关算法
人脸检测: RetinaFace
人脸对齐: Dense U-Net
人脸识别: ArcFace

  根据文献[1],文章首先介绍了三种利用卷积神经网络识别人脸的主要属性。先是训练数据,介绍了主要的人脸识别训练数据集;其次是网络结构,介绍了各种卷积神经网络;第三是损失函数,介绍了基于欧几里得距离的损失函数和基于角度和余弦的损失函数。

  文章介绍了从SoftMax到ArcFace损失函数。介绍了:(1)SoftMax损失函数;(2)权重归一化;(3)Angular Margin倍数损失函数;(4)特征归一化;(5)Cosine Margin损失函数;(6)Angular Margin损失函数;
数据集
LFW: http://vis-www.cs.umass.edu/lfw/
CFP: http://www.cfpw.io/index.html
AgeDB https://ibug.doc.ic.ac.uk/resources/agedb/
MegaFace: http://megaface.cs.washington.edu/
MS-Celeb-1M: https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world/
参考文献
[1] ArcFace: Additive Angular Margin Loss for Deep Face Recognition, Jiankang Deng, Jia Guo, Niannan Xue,
Stefanos Zafeiriou, https://arxiv.org/abs/1801.07698

[2] RetinaFace: Single-stage Dense Face Localisation in the Wild, Jiankang Deng, Jia Guo, Yuxiang Zhou,
Jinke Yu, Irene Kotsia, Stefanos Zafeiriou, https://arxiv.org/abs/1905.00641

[3] Stacked Dense U-Nets with Dual Transformers for Robust Face Alignment, Jia Guo, Jiankang Deng,
Niannan Xue, Stefanos Zafeiriou, https://arxiv.org/abs/1812.01936



推荐阅读
  • 兆芯X86 CPU架构的演进与现状(国产CPU系列)
    本文详细介绍了兆芯X86 CPU架构的发展历程,从公司成立背景到关键技术授权,再到具体芯片架构的演进,全面解析了兆芯在国产CPU领域的贡献与挑战。 ... [详细]
  • 在Windows系统中安装TensorFlow GPU版的详细指南与常见问题解决
    在Windows系统中安装TensorFlow GPU版是许多深度学习初学者面临的挑战。本文详细介绍了安装过程中的每一个步骤,并针对常见的问题提供了有效的解决方案。通过本文的指导,读者可以顺利地完成安装并避免常见的陷阱。 ... [详细]
  • 在嵌入式Linux系统中,性能低下通常由CPU、内存和I/O三个关键因素引起。为了有效提升系统性能,首先需要识别并定位性能瓶颈。通过综合分析这些瓶颈,可以采取针对性的优化措施,如调整内核参数、优化算法和改进数据结构等,从而显著提高系统的整体性能。 ... [详细]
  • python模块之正则
    re模块可以读懂你写的正则表达式根据你写的表达式去执行任务用re去操作正则正则表达式使用一些规则来检测一些字符串是否符合个人要求,从一段字符串中找到符合要求的内容。在 ... [详细]
  • 2020年9月15日,Oracle正式发布了最新的JDK 15版本。本次更新带来了许多新特性,包括隐藏类、EdDSA签名算法、模式匹配、记录类、封闭类和文本块等。 ... [详细]
  • HTTP(HyperTextTransferProtocol)是超文本传输协议的缩写,它用于传送www方式的数据。HTTP协议采用了请求响应模型。客服端向服务器发送一 ... [详细]
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
  • 本文介绍了几种常用的图像相似度对比方法,包括直方图方法、图像模板匹配、PSNR峰值信噪比、SSIM结构相似性和感知哈希算法。每种方法都有其优缺点,适用于不同的应用场景。 ... [详细]
  • 网站访问全流程解析
    本文详细介绍了从用户在浏览器中输入一个域名(如www.yy.com)到页面完全展示的整个过程,包括DNS解析、TCP连接、请求响应等多个步骤。 ... [详细]
  • 单片机入门指南:基础理论与实践
    本文介绍了单片机的基础知识及其应用。单片机是一种将微处理器(类似于CPU)、存储器(类似硬盘和内存)以及多种输入输出接口集成在一块硅片上的微型计算机系统。通过详细解析其内部结构和功能,帮助初学者快速掌握单片机的基本原理和实际操作方法。 ... [详细]
  • 本文深入探讨了NoSQL数据库的四大主要类型:键值对存储、文档存储、列式存储和图数据库。NoSQL(Not Only SQL)是指一系列非关系型数据库系统,它们不依赖于固定模式的数据存储方式,能够灵活处理大规模、高并发的数据需求。键值对存储适用于简单的数据结构;文档存储支持复杂的数据对象;列式存储优化了大数据量的读写性能;而图数据库则擅长处理复杂的关系网络。每种类型的NoSQL数据库都有其独特的优势和应用场景,本文将详细分析它们的特点及应用实例。 ... [详细]
  • 深入探索HTTP协议的学习与实践
    在初次访问某个网站时,由于本地没有缓存,服务器会返回一个200状态码的响应,并在响应头中设置Etag和Last-Modified等缓存控制字段。这些字段用于后续请求时验证资源是否已更新,从而提高页面加载速度和减少带宽消耗。本文将深入探讨HTTP缓存机制及其在实际应用中的优化策略,帮助读者更好地理解和运用HTTP协议。 ... [详细]
  • 【系统架构师精讲】(16):操作系统核心概念——寄存器、内存与缓存机制详解
    在计算机系统架构中,中央处理器(CPU)内部集成了多种高速存储组件,用于临时存储指令、数据和地址。这些组件包括指令寄存器(IR)、程序计数器(PC)和累加器(ACC)。寄存器作为集成电路中的关键存储单元,由触发器构成,具备极高的读写速度,使得数据传输非常迅速。根据功能不同,寄存器可分为基本寄存器和移位寄存器,各自在数据处理中发挥重要作用。此外,寄存器与内存和缓存机制的协同工作,确保了系统的高效运行。 ... [详细]
  • 如何在低配置电脑上下载并运行《绝地求生》游戏? ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
author-avatar
14835688_d4705c_859
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有