热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

(转)机器学习中的数学(3)模型组合(ModelCombining)之Boosting与GradientBoosting

版权声明:本文由LeftNotEasy发布于http:leftnoteasy.cnblogs.com,本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheele

版权声明:

    本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com

前言:

    本来上一章的结尾提到,准备写写线性分类的问题,文章都已经写得差不多了,但是突然听说最近Team准备做一套分布式的分类器,可能会使用Random Forest来做,下了几篇论文看了看,简单的random forest还比较容易弄懂,复杂一点的还会与boosting等算法结合(参见iccv09),对于boosting也不甚了解,所以临时抱佛脚的看了看。说起boosting,强哥之前实现过一套Gradient Boosting Decision Tree(GBDT)算法,正好参考一下。

    最近看的一些论文中发现了模型组合的好处,比如GBDT或者rf,都是将简单的模型组合起来,效果比单个更复杂的模型好。组合的方式很多,随机化(比如random forest),Boosting(比如GBDT)都是其中典型的方法,今天主要谈谈Gradient Boosting方法(这个与传统的Boosting还有一些不同)的一些数学基础,有了这个数学基础,上面的应用可以看Freidman的Gradient Boosting Machine。

    本文要求读者学过基本的大学数学,另外对分类、回归等基本的机器学习概念了解。

    本文主要参考资料是prml与Gradient Boosting Machine。

Boosting方法:

    Boosting这其实思想相当的简单,大概是,对一份数据,建立M个模型(比如分类),一般这种模型比较简单,称为弱分类器(weak learner)每次分类都将上一次分错的数据权重提高一点再进行分类,这样最终得到的分类器在测试数据与训练数据上都可以得到比较好的成绩。

   技术分享

    上图(图片来自prml p660)就是一个Boosting的过程,绿色的线表示目前取得的模型(模型是由前m次得到的模型合并得到的),虚线表示当前这次模型。每次分类的时候,会更关注分错的数据,上图中,红色和蓝色的点就是数据,点越大表示权重越高,看看右下角的图片,当m=150的时候,获取的模型已经几乎能够将红色和蓝色的点区分开了。

    Boosting可以用下面的公式来表示:

技术分享

    训练集中一共有n个点,我们可以为里面的每一个点赋上一个权重Wi(0 <= i 可以想象得到,程序越往后执行,训练出的模型就越会在意那些容易分错(权重高)的点。当全部的程序执行完后,会得到M个模型,分别对应上图的y1(x)…yM(x),通过加权的方式组合成一个最终的模型YM(x)。

    我觉得Boosting更像是一个人学习的过程,开始学一样东西的时候,会去做一些习题,但是常常连一些简单的题目都会弄错,但是越到后面,简单的题目已经难不倒他了,就会去做更复杂的题目,等到他做了很多的题目后,不管是难题还是简单的题都可以解决掉了。

Gradient Boosting方法:

    其实Boosting更像是一种思想,Gradient Boosting是一种Boosting的方法,它主要的思想是,每一次建立模型是在之前建立模型损失函数的梯度下降方向。这句话有一点拗口,损失函数(loss function)描述的是模型的不靠谱程度,损失函数越大,则说明模型越容易出错(其实这里有一个方差、偏差均衡的问题,但是这里就假设损失函数越大,模型越容易出错)。如果我们的模型能够让损失函数持续的下降,则说明我们的模型在不停的改进,而最好的方式就是让损失函数在其梯度(Gradient)的方向上下降。

    下面的内容就是用数学的方式来描述Gradient Boosting,数学上不算太复杂,只要潜下心来看就能看懂:)

    可加的参数的梯度表示:

    假设我们的模型能够用下面的函数来表示,P表示参数,可能有多个参数组成,P = {p0,p1,p2….},F(x;P)表示以P为参数的x的函数,也就是我们的预测函数。我们的模型是由多个模型加起来的,β表示每个模型的权重,α表示模型里面的参数。为了优化F,我们就可以优化{β,α}也就是P。

技术分享

    我们还是用P来表示模型的参数,可以得到,Φ(P)表示P的likelihood函数,也就是模型F(x;P)的loss函数,Φ(P)=…后面的一块看起来很复杂,只要理解成是一个损失函数就行了,不要被吓跑了。

技术分享   既然模型(F(x;P))是可加的,对于参数P,我们也可以得到下面的式子:技术分享   这样优化P的过程,就可以是一个梯度下降的过程了,假设当前已经得到了m-1个模型,想要得到第m个模型的时候,我们首先对前m-1个模型求梯度。得到最快下降的方向,gm就是最快下降的方向。

技术分享    这里有一个很重要的假设,对于求出的前m-1个模型,我们认为是已知的了,不要去改变它,而我们的目标是放在之后的模型建立上。就像做事情的时候,之前做错的事就没有后悔药吃了,只有努力在之后的事情上别犯错:

技术分享    我们得到的新的模型就是,它就在P似然函数的梯度方向。ρ是在梯度方向上下降的距离。

技术分享    我们最终可以通过优化下面的式子来得到最优的ρ:

技术分享

    可加的函数的梯度表示:

    上面通过参数P的可加性,得到了参数P的似然函数的梯度下降的方法。我们可以将参数P的可加性推广到函数空间,我们可以得到下面的函数,此处的fi(x)类似于上面的h(x;α),因为作者的文献中这样使用,我这里就用作者的表达方法:

技术分享   

     同样,我们可以得到函数F(x)的梯度下降方向g(x)

技术分享   

     最终可以得到第m个模型fm(x)的表达式:

技术分享

    通用的Gradient Descent Boosting的框架:

   下面我将推导一下Gradient Descent方法的通用形式,之前讨论过的:

技术分享   

    对于模型的参数{β,α},我们可以用下面的式子来进行表示,这个式子的意思是,对于N个样本点(xi,yi)计算其在模型F(x;α,β)下的损失函数,最优的{α,β}就是能够使得这个损失函数最小的{α,β}。技术分享 表示两个m维的参数:

技术分享   

     写成梯度下降的方式就是下面的形式,也就是我们将要得到的模型fm(x)的参数{αm,βm}能够使得fm的方向是之前得到的模型Fm-1(x)的损失函数下降最快的方向:

技术分享

    对于每一个数据点xi都可以得到一个gm(xi),最终我们可以得到一个完整梯度下降方向

技术分享

技术分享   

    为了使得fm(x)能够在gm(x)的方向上,我们可以优化下面的式子得到,可以使用最小二乘法:

技术分享  

   得到了α的基础上,然后可以得到βm。  

技术分享   

   最终合并到模型中:

技术分享

    算法的流程图如下

技术分享    

    之后,作者还说了这个算法在其他的地方的推广,其中,Multi-class logistic regression and classification就是GBDT的一种实现,可以看看,流程图跟上面的算法类似的。这里不打算继续写下去,再写下去就成论文翻译了,请参考文章:Greedy function Approximation – A Gradient Boosting Machine,作者Freidman。

总结:

    本文主要谈了谈Boosting与Gradient Boosting的方法,Boosting主要是一种思想,表示“知错就改”。而Gradient Boosting是在这个思想下的一种函数(也可以说是模型)的优化的方法,首先将函数分解为可加的形式(其实所有的函数都是可加的,只是是否好放在这个框架中,以及最终的效果如何)。然后进行m次迭代,通过使得损失函数在梯度方向上减少,最终得到一个优秀的模型。值得一提的是,每次模型在梯度方向上的减少的部分,可以认为是一个“小”的或者“弱”的模型,最终我们会通过加权(也就是每次在梯度方向上下降的距离)的方式将这些“弱”的模型合并起来,形成一个更好的模型。

    有了这个Gradient Descent这个基础,还可以做很多的事情。也在机器学习的道路上更进一步了:)

(转)机器学习中的数学(3)-模型组合(Model Combining)之Boosting与Gradient Boosting


推荐阅读
  • 知识图谱——机器大脑中的知识库
    本文介绍了知识图谱在机器大脑中的应用,以及搜索引擎在知识图谱方面的发展。以谷歌知识图谱为例,说明了知识图谱的智能化特点。通过搜索引擎用户可以获取更加智能化的答案,如搜索关键词"Marie Curie",会得到居里夫人的详细信息以及与之相关的历史人物。知识图谱的出现引起了搜索引擎行业的变革,不仅美国的微软必应,中国的百度、搜狗等搜索引擎公司也纷纷推出了自己的知识图谱。 ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
  • 欢乐的票圈重构之旅——RecyclerView的头尾布局增加
    项目重构的Git地址:https:github.comrazerdpFriendCircletreemain-dev项目同步更新的文集:http:www.jianshu.comno ... [详细]
  • 在IDEA中运行CAS服务器的配置方法
    本文介绍了在IDEA中运行CAS服务器的配置方法,包括下载CAS模板Overlay Template、解压并添加项目、配置tomcat、运行CAS服务器等步骤。通过本文的指导,读者可以轻松在IDEA中进行CAS服务器的运行和配置。 ... [详细]
  • 本文介绍了lua语言中闭包的特性及其在模式匹配、日期处理、编译和模块化等方面的应用。lua中的闭包是严格遵循词法定界的第一类值,函数可以作为变量自由传递,也可以作为参数传递给其他函数。这些特性使得lua语言具有极大的灵活性,为程序开发带来了便利。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • HDU 2372 El Dorado(DP)的最长上升子序列长度求解方法
    本文介绍了解决HDU 2372 El Dorado问题的一种动态规划方法,通过循环k的方式求解最长上升子序列的长度。具体实现过程包括初始化dp数组、读取数列、计算最长上升子序列长度等步骤。 ... [详细]
  • 本文讨论了如何优化解决hdu 1003 java题目的动态规划方法,通过分析加法规则和最大和的性质,提出了一种优化的思路。具体方法是,当从1加到n为负时,即sum(1,n)sum(n,s),可以继续加法计算。同时,还考虑了两种特殊情况:都是负数的情况和有0的情况。最后,通过使用Scanner类来获取输入数据。 ... [详细]
  • [译]技术公司十年经验的职场生涯回顾
    本文是一位在技术公司工作十年的职场人士对自己职业生涯的总结回顾。她的职业规划与众不同,令人深思又有趣。其中涉及到的内容有机器学习、创新创业以及引用了女性主义者在TED演讲中的部分讲义。文章表达了对职业生涯的愿望和希望,认为人类有能力不断改善自己。 ... [详细]
  • 本文详细介绍了Linux中进程控制块PCBtask_struct结构体的结构和作用,包括进程状态、进程号、待处理信号、进程地址空间、调度标志、锁深度、基本时间片、调度策略以及内存管理信息等方面的内容。阅读本文可以更加深入地了解Linux进程管理的原理和机制。 ... [详细]
  • 后台获取视图对应的字符串
    1.帮助类后台获取视图对应的字符串publicclassViewHelper{将View输出为字符串(注:不会执行对应的ac ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • 动态规划算法的基本步骤及最长递增子序列问题详解
    本文详细介绍了动态规划算法的基本步骤,包括划分阶段、选择状态、决策和状态转移方程,并以最长递增子序列问题为例进行了详细解析。动态规划算法的有效性依赖于问题本身所具有的最优子结构性质和子问题重叠性质。通过将子问题的解保存在一个表中,在以后尽可能多地利用这些子问题的解,从而提高算法的效率。 ... [详细]
  • CentOS 7部署KVM虚拟化环境之一架构介绍
    本文介绍了CentOS 7部署KVM虚拟化环境的架构,详细解释了虚拟化技术的概念和原理,包括全虚拟化和半虚拟化。同时介绍了虚拟机的概念和虚拟化软件的作用。 ... [详细]
  • 建立分类感知器二元模型对样本数据进行分类
    本文介绍了建立分类感知器二元模型对样本数据进行分类的方法。通过建立线性模型,使用最小二乘、Logistic回归等方法进行建模,考虑到可能性的大小等因素。通过极大似然估计求得分类器的参数,使用牛顿-拉菲森迭代方法求解方程组。同时介绍了梯度上升算法和牛顿迭代的收敛速度比较。最后给出了公式法和logistic regression的实现示例。 ... [详细]
author-avatar
DLDLBABY1_182
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有