热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【重磅】新一代Angel正式开源,性能超越XGBoost和Spark

经过漫长的准备和打磨,新一代的Angel终于开源了!新一代的Angel由腾讯和北京大学联合开发,兼顾业界的高可用性和学术界的创新性,欢迎分布式架构师,算法工程师和数据科学家一起深入

经过漫长的准备和打磨,新一代的Angel终于开源了!新一代的Angel由腾讯和北京大学联合开发,兼顾业界的高可用性和学术界的创新性,欢迎分布式架构师算法工程师数据科学家一起深入使用和协同开发,激发机器学习领域更多的创新应用和良好生态。

Github:Tencent/angel 欢迎大家Star,Fork和提PR。

作为一个高维度的分布式机器学习框架,Angel的第一次对外亮相是在去年的五月(面向高维度的机器学习计算框架-Angel),并在去年12月份KDDChina大会上(腾讯大数据第三代高性能计算平台-Angel),宣布将全面进行开源。

为了迎接对外开源,团队成员对Angel进行了多次重构和升级,可谓是淬火重炼。在此期间,Angel的架构反复改进,性能持续提升。开源前夕,它的性能已经超越了XGBoost和Spark。新一代的Angel,性能更快,功能更强,开发更方便。其改进主要集中在三方面:

《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》

生态性

引入PSAgent,支持PS-Service,便于接入其它机器学习框架。

函数性

融合函数式编程特性,自定义psFunc,利于开发复杂算法。

灵活性

支持Spark-on-Angel,Spark无需修改内核,运行于PS模式之上。

本文将从架构性能两方面,对新一代Angel,做一个初步的介绍,让大家了解它的改进,请移步Github(Tencent/angel)。

架构升级

1. PSService

在新一代的Angel开发中,我们对系统进行了一次重要的升级,引入了PSAgent,对PSServer的服务端进行隔离,从而提供了PS-Service的功能。升级后,系统的架构设计如下:

《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》

引入PSAgent后,PSClient不再直接和PSServer打交道了,而是通过PSAgent来沟通。作为新加的中间层PSAnget,有如下几个特性:

  • 对外屏蔽了PSServer中的模型分片,路由以及模型重组等复杂细节,提供了封装好的模型操作接口

  • 内置了Hogwild!机制,包含模型缓存和模型预取等性能优化

  • 提供了模型缓存(Cache)更新合并的功能,大大降低网络通信开销

PSAgent的引入,解耦了PSServer和Worker,使得Angel具备了PSService的能力。Angel的PSServer,不再只服务于Angel的Client,其它机器学习框架,只要实现AngelPSClient接口了,都能可以接入Angel。

PSService的抽象,为Angel接入Spark和深度学习框架,从架构的层面上提供了便利

2. psFunc

标准Parameter Server功能之一,就是要提供Model的拉取(pull/get)推送(push/update)。 很多早期PS,拿HBase,Redis等分布式存储系统,简单改改,进行模型的更新和获取,就搭建了一个简单的PS系统。

但实际应用中,算法对PSServer上的参数获取和更新,却远远不只这么简单,尤其是当复杂的算法需要实施一些特定的优化的时候,简单的PS系统,就完全不能应对这些需求了。

举个例子,有时候某些算法,要得到矩阵模型中某一行的最大值,如果PS系统,只有基本的Pull接口,那么PSClient,就只能先将该行的所有列,都从参数服务器上拉取回来,然后在Worker上计算得到最大值,这样会产生很多的网络通信开销,对性能会有影响。

而如果我们有一个自定义函数,每个PSServer在远程先计算出n个局部最大值,再交换确认全局最大值,这时只要返回1个数值就可以了,这样的方式,计算开销接近,但通信开销将大大降低。

为了解决类似的问题,Angel引入和实现psFunc的概念,对远程模型的获取和更新的流程进行了封装和抽象。它也是一种用户自定义函数(UDF),但都和PS操作密切相关的,因此被成为psFunc,简称psf,整体架构如下:

《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》

随着psFunc的引入,模型的计算,也会发生在PSServer端。PSServer也将有一定的模型计算职责,而不是单纯的模型存储功能。合理的设计psFunc,将大大的加速算法的运行。

3. Spark on Angel

作为目前非常流行的分布式内存计算框架,Spark 的核心概念是RDD,而RDD的关键特性之一,是其不可变性,它可以规避分布式环境下复杂的各种奇奇怪怪的并行问题,快速开发各种分布式数据处理算法。然而在机器学习的时代,这个设计反而制约了Spark的发展。因为机器学习的核心是迭代和参数更新,而RDD的不可变性,不适合参数反复多次更新的需求,因此诸多Spark机器学习算法的实现,非常的曲折和不直观。

现在,基于Angel提供的PSServicepsFunc,Spark可以充分利用Angel的PS,用最小的修改代价,具备高速训练大模型的能力,写出更加优雅的机器学习算法代码。

Spark on Angel实现的基本架构设计如下:

《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》

可以看出,该实现非常灵活,它对Spark没有任何侵入式的修改,是一种插件式设计,因此完全兼容社区Spark,对原生Spark的程序不会有任何影响。它的基本执行流程如下

  1. 启动SparkSession

  2. 初始化PSContext,启动Angel的PSServer

  3. 创建PSModelPool, 申请到PSVector

  4. 核心调用:在RDD的运算中,直接调用PSVector,进行模型更新。这将使得真正运行的Task,调用AngelPSClient,对远程PSServer进行操作。

  5. 终止PSContext

  6. 停止SparkSession

关于Spark on Angel的具体开发,可参考:Github《Spark on Angel编程手册》((Tencent/angel) )。在线上,基于真实的数据,我们对Spark on Angel和Spark的做了性能对比测试,结果如下:

《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》

显而易见,Spark on Angel能轻松获得30%或更多的加速比,越复杂的算法和模型,性能提高的比例越大。虽然PSServer会耗费了额外的资源,但是比起算法编写的便捷性能的提升,这是划算的。对于Spark的老用户,这是低成本切入Angel的一个途径,也是算法工程师基于Spark实现高难度算法的优雅姿势。

Spark on Angel是Angel生态圈的第一个成员,后续会有更多基于PS-Service的框架接入,包括深度学习。

性能优势

新版本的Angel,添加了诸多新功能,最终的目的,就是让算法工程师能更加从容地进行算法优化,融入更多的算法的Trick,让算法的性能,得到了一个飞跃的提升。

相关性能的细节数据,在Github的各个算法介绍文档都可以看到,欢迎点击文末“阅读原文”移步GitHub。

1.GBDT

众所周知,XGBoost的强项之一,就是GBDT算法,性能飞快,使用简单,在众多算法比赛中,是选手们的最爱。尽管如此,Angel的GBDT算法,却还是超越了它,这是一个非常不错的性能背书。

  • 性能比较

《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》

《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》

  • 数据:腾讯内部某性别预测数据集,3.3×10^5 特征,1.2×10^8 样本

  • 详细文档:GBDT on Angel(Tencent/angel)

2.LDA

众所周知,LDA是一个非常消耗资源的主题模型算法,新一代的Angel,在LDA上的性能,不但超越了Spark,也已经超越了之前开源过的Petuum。(由于Petuum已经不开源多时,所以比对数据,这里就不再贴出了)

《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》

  • 数据:PubMED

  • 详细文档: LDA on Angel(Tencent/angel)

3.GD-LR

LR是广告推荐中广泛应用的一个算法,Angel分别提供了利用Gradient Descent、ADMM两种优化方法计算的LR算法。这两种算法,无论是耗费的资源,还是性能、收敛速度,都远比原生的Spark实现优越。

  • GD-LR

《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》

  • 数据: 腾讯内部某推荐数据,5×10^7 特征,8×10^7 样本

  • 详细文档: LR on Angel(Tencent/angel)

  • ADMM-LR

《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》
《【重磅】新一代Angel正式开源,性能超越XGBoost和Spark》

  • 数据:腾讯内部某推荐数据,5千万特征,1亿样本

展望

一把好的宝剑,经过千锤百炼,讲究的是刚柔并济,不但削铁如泥,也要有极好的韧性,百折不断。同样的,一个好的开源项目,也是如此。它不但需要有强大的功能和性能,也需要有良好的适配性,能形成好的生态。

超大样本和超高维度的机器学习,在腾讯的多个真实生产环境中,有着非常普遍的应用场景,这是Angel的切入点,但不是终点和约束,在未来,Angel还将深入到图计算和深度学习领域,借助开源的力量,做出更多的探索,无论是Wider还是Deeper的模型,Angel都希望能像天使一样,在多个机器学习框架上为它们提速,帮助各个业务提升效果,为腾讯AI的发展插上翅膀。

更多内容欢迎关注“腾讯大数据”(微信号:tencentbigdata)公众号。

腾讯大数据平台关注大数据平台构建、数据挖掘、数据应用等。信息共享,促进行业交流。通过多年产品建设,腾讯大数据已成功为开发者提供腾讯移动分析(MTA)、腾讯移动推送(信鸽)、腾讯推荐等数据产品,同时与腾讯云合作,推出大数据处理套件(数智),对外提供了可靠、安全、易用的大数据处理能力。


推荐阅读
  • 作为140字符的开创者,Twitter看似简单却异常复杂。其简洁之处在于仅用140个字符就能实现信息的高效传播,甚至在多次全球性事件中超越传统媒体的速度。然而,为了支持2亿用户的高效使用,其背后的技术架构和系统设计则极为复杂,涉及高并发处理、数据存储和实时传输等多个技术挑战。 ... [详细]
  • 本文深入探讨了NoSQL数据库的四大主要类型:键值对存储、文档存储、列式存储和图数据库。NoSQL(Not Only SQL)是指一系列非关系型数据库系统,它们不依赖于固定模式的数据存储方式,能够灵活处理大规模、高并发的数据需求。键值对存储适用于简单的数据结构;文档存储支持复杂的数据对象;列式存储优化了大数据量的读写性能;而图数据库则擅长处理复杂的关系网络。每种类型的NoSQL数据库都有其独特的优势和应用场景,本文将详细分析它们的特点及应用实例。 ... [详细]
  • Spark与HBase结合处理大规模流量数据结构设计
    本文将详细介绍如何利用Spark和HBase进行大规模流量数据的分析与处理,包括数据结构的设计和优化方法。 ... [详细]
  • 网站访问全流程解析
    本文详细介绍了从用户在浏览器中输入一个域名(如www.yy.com)到页面完全展示的整个过程,包括DNS解析、TCP连接、请求响应等多个步骤。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • MySQL的查询执行流程涉及多个关键组件,包括连接器、查询缓存、分析器和优化器。在服务层,连接器负责建立与客户端的连接,查询缓存用于存储和检索常用查询结果,以提高性能。分析器则解析SQL语句,生成语法树,而优化器负责选择最优的查询执行计划。这一流程确保了MySQL能够高效地处理各种复杂的查询请求。 ... [详细]
  • Git命令基础应用指南
    本指南详细介绍了Git命令的基础应用,包括如何使用`git clone`从远程服务器克隆仓库(例如:`git clone [url/path/repository]`)以及如何克隆本地仓库(例如:`git clone [local/path/repository]`)。此外,还提供了常见的Git操作技巧,帮助开发者高效管理代码版本。 ... [详细]
  • 深入探索HTTP协议的学习与实践
    在初次访问某个网站时,由于本地没有缓存,服务器会返回一个200状态码的响应,并在响应头中设置Etag和Last-Modified等缓存控制字段。这些字段用于后续请求时验证资源是否已更新,从而提高页面加载速度和减少带宽消耗。本文将深入探讨HTTP缓存机制及其在实际应用中的优化策略,帮助读者更好地理解和运用HTTP协议。 ... [详细]
  • 本文详细介绍了在Linux系统上编译安装MySQL 5.5源码的步骤。首先,通过Yum安装必要的依赖软件包,如GCC、GCC-C++等,确保编译环境的完备。接着,下载并解压MySQL 5.5的源码包,配置编译选项,进行编译和安装。最后,完成安装后,进行基本的配置和启动测试,确保MySQL服务正常运行。 ... [详细]
  • 如何利用Java 5 Executor框架高效构建和管理线程池
    Java 5 引入了 Executor 框架,为开发人员提供了一种高效管理和构建线程池的方法。该框架通过将任务提交与任务执行分离,简化了多线程编程的复杂性。利用 Executor 框架,开发人员可以更灵活地控制线程的创建、分配和管理,从而提高服务器端应用的性能和响应能力。此外,该框架还提供了多种线程池实现,如固定线程池、缓存线程池和单线程池,以适应不同的应用场景和需求。 ... [详细]
  • 本文深入探讨了 Git 与 SVN 的高效使用技巧,旨在帮助开发者轻松应对版本控制中的各种挑战。通过详细解析两种工具的核心功能与最佳实践,读者将能够更好地掌握版本管理的精髓,提高开发效率。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 从无到有,构建个人专属的操作系统解决方案
    操作系统(OS)被誉为程序员的三大浪漫之一,常被比喻为计算机的灵魂、大脑、内核和基石,其重要性不言而喻。本文将详细介绍如何从零开始构建个人专属的操作系统解决方案,涵盖从需求分析到系统设计、开发与测试的全过程,帮助读者深入理解操作系统的本质与实现方法。 ... [详细]
  • NVIDIA最新推出的Ampere架构标志着显卡技术的一次重大突破,不仅在性能上实现了显著提升,还在能效比方面进行了深度优化。该架构融合了创新设计与技术改进,为用户带来更加流畅的图形处理体验,同时降低了功耗,提升了计算效率。 ... [详细]
  • 表面缺陷检测数据集综述及GitHub开源项目推荐
    本文综述了表面缺陷检测领域的数据集,并推荐了多个GitHub上的开源项目。通过对现有文献和数据集的系统整理,为研究人员提供了全面的资源参考,有助于推动该领域的发展和技术进步。 ... [详细]
author-avatar
徘徊在堕落边缘的魔鬼
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有