热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

知识图谱表示吱吱了了

知识图谱表示概念:知识图谱是由一些相互连接的实体和他们的属性构成的。换句话说,知识图谱是由一条条知识组成,每条知识表示为一个SPO三元组(Subject-Predicate-Obj

知识图谱表示



概念:

知识图谱是由一些相互连接的实体和他们的属性构成的。换句话说,知识图谱是由一条条知识组成,每条知识表示为一个SPO三元组(Subject-Predicate-Object)。

 

 


表示方法:传统+向量

传统的知识图谱表示方法是采用OWL、RDF、RDFS(改进)等本体语言进行描述;

RDF:(Resource Description Framework,资源描述框架)

RDF由节点和边组成,节点表示实体/资源、属性,边则表示了实体和实体之间的关系以及实体和属性的关系,其本质是一个数据模型(Data Model)。它提供了一个统一的标准,用于描述实体/资源。简单来说,就是表示事物的一种方法和手段。RDF形式上表示为SPO三元组,资源——关系——资源。

表示方法一:

 

表示方法二:N-Triples表示

<http://www.kg.com/person/2> <http://www.kg.com/ontology/chineseName> "川普"^^string.
<http://www.kg.com/person/2> <http://www.kg.com/ontology/position> "美利坚第45任总统"^^string.
<http://www.kg.com/person/2> <http://www.kg.com/ontology/wife> "梅拉尼娅-特朗普"^^string.
<http://www.kg.com/person/2> <http://www.kg.com/ontology/nation> "USA"^^string.
<http://www.kg.com/person/2> <http://www.kg.com/ontology/age> "72"^^int.
<http://www.kg.com/person/2> <http://www.kg.com/ontology/belongparty> <http://www.kg.com/Party/2018>.
<http://www.kg.com/party/2018> <http://www.kg.com/ontology/name> "republic"^^string.
<http://www.kg.com/party/2018> <http://www.kg.com/ontology/fonder> "汉尼巴尔·哈姆林"^^string.
<http://www.kg.com/party/2018> <http://www.kg.com/ontology/born> "1854"^^data.

View Code

@prefix person: <http://www.kg.com/person/> .
@prefix party:
<http://www.kg.com/party/> .
@prefix :
<http://www.kg.com/ontology/> .
person:1 :chineseName "川普"^^string;
:position "美利坚第45任总统"^^string;
:wife "梅拉尼娅-特朗普"^^string;
:nation "USA"^^string;
:age "72"^^int;
party:2018 :name "汉尼巴尔·哈姆林"^^string;
:born "1854"^^data.

View Code

RDFS:(RDF Schema)

 RDFS在RDF的基础上定义了类(class)、属性(property)以及关系(relation)来描述资源,并且通过属性的定义域(domain)和值域(range)来约束资源。RDFS在数据层(data)的基础上引入了模式层(schema),模式层定义了一种约束规则,而数据层是在这种规则下的一个实例填充。

 

 

 

 

OWL:(Web Ontology Language,网络本体语言)

OWL是对RDFS关于描述资源词汇的一个扩展,OWL中添加了额外的预定于词汇来描述资源,具备更好的语义表达能力。在OWL中可以声明资源的等价性,属性的传递性、互斥性、函数性、对称性等等,具体见OWL的词汇扩展。

 

 

 


 向量Embedding:TranE、TranH、TranM等

随着深度学习的发展与应用,我们期望采用一种更为简单的方式表示,那就是【向量】,采用向量形式可以方便我们进行之后的各种工作,比如:推理,所以,我们现在的目标就是把每条简单的三元组 编码为一个低维分布式向量。

 

 

 


TranE:

将每个三元组实例(head,relation,tail)中的关系relation看做从实体head到实体tail的翻译,通过不断调整h、r 和 t(head、relation和tail的向量),使(h + r) 尽可能与 t 相等,即 h + r = t

TransE 是基于实体和关系的分布式向量表示,由 Bordes 等人于2013年提出,受word2vec启发,利用了词向量的【平移不变现象】。

例如:C(king)−C(queen)≈C(man)−C(woman)   其中,C(w)就是word2vec学习到的词向量表示。

TransE 定义了一个距离函数 d(h + r, t),它用来衡量 h + r 和 t 之间的距离,在实际应用中可以使用 L1 或 L2 范数。在模型的训练过程中,transE采用最大间隔方法,最小化目标函数,目标函数如下:

 

其中,S是知识库中的三元组即训练集,S’是负采样的三元组,通过替换 h 或 t 所得,是人为随机生成的。γ 是取值大于0的间隔距离参数,是一个超参数,[x]+表示正值函数,即 x > 0时,[x]+ = x;当 x ≤ 0 时,[x]+ = 0 。算法模型比较简单,梯度更新只需计算距离 d(h+r, t) 和 d(h’+r, t’)。

缺点:

虽然TransE模型的参数较少,计算的复杂度显著降低,并且在大规模稀疏知识库上也同样具有较好的性能与可扩展性。但是TransE 模型不能用在处理复杂关系上 ,原因如下:以一对多为例,对于给定的事实,以姜文拍的民国三部曲电影为例,即《让子弹飞》、《一步之遥》和《邪不压正》。可以得到三个事实三元组即(姜文,导演,让子弹飞)、(姜文,导演,一步之遥)和(姜文,导演,邪不压正)。按照上面对于TransE模型的介绍,可以得到,让子弹飞≈一步之遥≈邪不压正,但实际上这三部电影是不同的实体,应该用不同的向量来表示。多对一和多对多也类似。

 


TranH:

TranH为了解决TranE一对多的问题:

 

 

把h和t 投影到一个超平面,得到投影向量h,r⊥,然后关系作为在这两个投影向量之间的平移。
对于每一种关系都要训练出一个超平面和与之对应的关系r,参数量有所增加。

 TranR:

TransR 认为实体空间和关系空间应该是不同的。
实体 h 和 t 映射到关系空间中再做这种平移变换。

 

 

 

对于每一个关系有一个与之对应的r和 Mr

 

 

摘抄:

https://blog.csdn.net/baijinswpu/article/details/81185965

https://blog.csdn.net/weixin_40871455/article/details/83341561

https://blog.csdn.net/OCR207208207208/article/details/93490339


 



推荐阅读
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文详细分析了JSP(JavaServer Pages)技术的主要优点和缺点,帮助开发者更好地理解其适用场景及潜在挑战。JSP作为一种服务器端技术,广泛应用于Web开发中。 ... [详细]
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • 本文详细介绍了Java中org.eclipse.ui.forms.widgets.ExpandableComposite类的addExpansionListener()方法,并提供了多个实际代码示例,帮助开发者更好地理解和使用该方法。这些示例来源于多个知名开源项目,具有很高的参考价值。 ... [详细]
  • 深入解析Spring Cloud Ribbon负载均衡机制
    本文详细介绍了Spring Cloud中的Ribbon组件如何实现服务调用的负载均衡。通过分析其工作原理、源码结构及配置方式,帮助读者理解Ribbon在分布式系统中的重要作用。 ... [详细]
  • DNN Community 和 Professional 版本的主要差异
    本文详细解析了 DotNetNuke (DNN) 的两种主要版本:Community 和 Professional。通过对比两者的功能和附加组件,帮助用户选择最适合其需求的版本。 ... [详细]
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • 本文介绍了在Windows环境下使用pydoc工具的方法,并详细解释了如何通过命令行和浏览器查看Python内置函数的文档。此外,还提供了关于raw_input和open函数的具体用法和功能说明。 ... [详细]
  • 本文探讨了如何在编程中正确处理包含空数组的 JSON 对象,提供了详细的代码示例和解决方案。 ... [详细]
  • 本文介绍如何使用阿里云的fastjson库解析包含时间戳、IP地址和参数等信息的JSON格式文本,并进行数据处理和保存。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • Java 中的 BigDecimal pow()方法,示例 ... [详细]
  • PHP 5.2.5 安装与配置指南
    本文详细介绍了 PHP 5.2.5 的安装和配置步骤,帮助开发者解决常见的环境配置问题,特别是上传图片时遇到的错误。通过本教程,您可以顺利搭建并优化 PHP 运行环境。 ... [详细]
  • 解决PHP与MySQL连接时出现500错误的方法
    本文详细探讨了当使用PHP连接MySQL数据库时遇到500内部服务器错误的多种解决方案,提供了详尽的操作步骤和专业建议。无论是初学者还是有经验的开发者,都能从中受益。 ... [详细]
  • 尽管某些细分市场如WAN优化表现不佳,但全球运营商路由器和交换机市场持续增长。根据最新研究,该市场预计在2023年达到202亿美元的规模。 ... [详细]
author-avatar
独角戏小说
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有