热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

诊断实验评估指标灵敏度(sensitivity)特异度(specificity)准确度(accuracy)

在临床上经常会用到诊断试验的手段,用于疾病诊断、病人随访或疗效监测等。判断某一诊断试验的结果是否真实、可靠,是否具有实用性,从而确定合理的

在临床上经常会用到诊断试验的手段,用于疾病诊断、病人随访或疗效监测等。判断某一诊断试验的结果是否真实、可靠,是否具有实用性,从而确定合理的医疗决策。

       一项诊断试验需要具备能正确的鉴别患病和未患病的能力,以反映患病实际情况的准确程度,这其中涉及到几个重要概念:灵敏度(sensitivity)、特异度(specificity)、准确度(accuracy)、阳性预测值以及阴性预测值。

      希望大家能够准确理解以上5个重要指标,并通过以下模拟试题练习加深理解。

      模拟试题:一项胃癌临床诊断试验受试人数是200人,实际情况为50人患胃癌,150人正常;诊断结果显示,有160人正常,40人诊断为胃癌,而这40人当中实则仅有35人真正患癌。请根据数据判断该项诊断试验的灵敏度(sensitivity)、特异度(specificity)、准确度(accuracy)、阳性预测值以及阴性预测值。

      其实,这5个指标在也适用于评价我们call变异所用的软件效能。比如:全基因组测序进行SNV检测时使用了2个软件: GATK和MuTect,共检出1300个变异,其中GATK检出1000个SNV,MuTect检出1100个SNV,共有SNV是800个;经过目标区域测序进行验证后,发现共有的800个突变均得到验证, GATK特有的SNV有80个得到验证,MuTect特有的SNV有150个得到验证(假定经过目标区域测序验证成功的SNV即为真实存在的突变) 。请计算MuTect软件的以上5个指标。

灵敏度(Sensitivity,也称为真阳性率)是指实际为阳性的样本中,判断为阳性的比例(例如真正有生病的人中,被医院判断为有生病者的比例),计算方式是真阳性除以真阳性+假阴性(实际为阳性,但判断为阴性)的比值(能将实际患病的病例正确地判断为患病的能力,即患者被判为阳性的概率);

特异度(Specificity,也称为真阴性率)是指实际为阴性的样本中,判断为阴性的比例(例如真正未生病的人中,被医院判断为未生病者的比例),计算方式是真阴性除以真阴性+假阳性(实际为阴性,但判断为阳性)的比值(能正确判断实际未患病的病例的能力,即试验结果为阴性的比例)。

阳性预测值是指真阳性人数占试验结果阳性人数的百分比,表示试验结果阳性者属于真病例的概率。

阴性预测值是指真阴性人数占试验结果阴性人数的百分比,表示试验结果阴性者属于非病例的概率。

准确度(accuracy)也称效率(efficiency),用真阳性与真阴性人数之和占受试人数的百分率表示。

灵敏度= a/(a+c)×100%

特异度=d/(b+d)×100%

阳性预测值=a/(a+b)×100%

阴性预测值=d/(c+d)×100%

准确度=(a+d)/n×100%

模拟题1为基础题,意在帮助大家理解概念,而在实际情况中我们遇到的情况可能就是类似于模拟题2的情境。准确把握真实值和试验值,画出四格表是关键,然后就可以代入公式啦~

模拟题1较为简单,四格表如下:

 
疾病
阳性
阴性
试验结果
阳性
真阳性   35    a
假阳性 5      b
阴性
假阴性    15    c
真阴性 145     d

模拟题2首先要画出MuTect 软件和GATK软件变异检出情况(文恩图),则理解起来更容易。

针对于MuTect软件的变异检出画四格表,如下:

 

 

 真变异
阳性阴性
MuTect检测结果阳性真阳性    950     a假阳性 150      b
阴性假阴性   80     c真阴性 120       d


转载于:https://www.cnblogs.com/xiaofeiIDO/p/8366360.html


推荐阅读
  • PyCharm下载与安装指南
    本文详细介绍如何从官方渠道下载并安装PyCharm集成开发环境(IDE),涵盖Windows、macOS和Linux系统,同时提供详细的安装步骤及配置建议。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • Java 中的 BigDecimal pow()方法,示例 ... [详细]
  • 探讨如何高效使用FastJSON进行JSON数据解析,特别是从复杂嵌套结构中提取特定字段值的方法。 ... [详细]
  • Vue 2 中解决页面刷新和按钮跳转导致导航栏样式失效的问题
    本文介绍了如何通过配置路由的 meta 字段,确保 Vue 2 项目中的导航栏在页面刷新或内部按钮跳转时,始终保持正确的 active 样式。具体实现方法包括设置路由的 meta 属性,并在 HTML 模板中动态绑定类名。 ... [详细]
  • 使用Numpy实现无外部库依赖的双线性插值图像缩放
    本文介绍如何仅使用Numpy库,通过双线性插值方法实现图像的高效缩放,避免了对OpenCV等图像处理库的依赖。文中详细解释了算法原理,并提供了完整的代码示例。 ... [详细]
  • Docker的安全基准
    nsitionalENhttp:www.w3.orgTRxhtml1DTDxhtml1-transitional.dtd ... [详细]
  • 本文详细介绍了 BERT 模型中 Transformer 的 Attention 机制,包括其原理、实现代码以及在自然语言处理中的应用。通过结合多个权威资源,帮助读者全面理解这一关键技术。 ... [详细]
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • QBlog开源博客系统:Page_Load生命周期与参数传递优化(第四部分)
    本教程将深入探讨QBlog开源博客系统的Page_Load生命周期,并介绍一种简洁的参数传递重构方法。通过视频演示和详细讲解,帮助开发者更好地理解和应用这些技术。 ... [详细]
  • 本文探讨了如何像程序员一样思考,强调了将复杂问题分解为更小模块的重要性,并讨论了如何通过妥善管理和复用已有代码来提高编程效率。 ... [详细]
  • python的交互模式怎么输出名文汉字[python常见问题]
    在命令行模式下敲命令python,就看到类似如下的一堆文本输出,然后就进入到Python交互模式,它的提示符是>>>,此时我们可以使用print() ... [详细]
  • 火星商店问题:线段树分治与持久化Trie树的应用
    本题涉及编号为1至n的火星商店,每个商店有一个永久商品价值v。操作包括每天在指定商店增加一个新商品,以及查询某段时间内某些商店中所有商品(含永久商品)与给定密码值的最大异或结果。通过线段树分治和持久化Trie树来高效解决此问题。 ... [详细]
  • 本文总结了汇编语言中第五至第八章的关键知识点,涵盖间接寻址、指令格式、安全编程空间、逻辑运算指令及数据重复定义等内容。通过详细解析这些内容,帮助读者更好地理解和应用汇编语言的高级特性。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
author-avatar
辰S辰_588
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有