作者:PHP菜鸟 | 来源:互联网 | 2023-09-01 09:05
本篇内容主要讲解“怎么使用MQTT与函数计算做热力图”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么使用MQTT与函数计算做热力图”吧!
场景特点与要求:
1. 数据通道的连接能力:数据通道随着业务的扩展,机器人的投放也会同步增加,对于数据通道有足够的扩展灵活性,可以按需进行扩展,同时连接的级别能够支持10W+级别的扩展。
2. 简洁数据清洗的能力:对于数据的处理,本质上就是对数据的归纳统计,逻辑实现上并不复杂。对于数据本身的峰谷变化,能有最简单有效的匹配扩缩处理能力即可,在清洗上不希望为此引入复杂的传统大数据级别的笨重方案。
3. 弹性数据访问的能力:这里提到的的热力图信息,以后会考虑开放给终端用户访问,访问量都是动态变化的,随着不同的时间、节日、突发事件等都会有不可预知的幅度变化,所以在此业务中要求有弹性的访问能力。业务方不希望通过限流方式来实现,因为会对业务量本身造成影响。
4. 性能优越的存储能力:此场景下,数据写入与读取并发量都高,客户希望使用NoSQL的方式进行存储。NoSQL 类型能最好支持排序的功能,本文介绍的方案中使用Redis,不再做更多的分析介绍。
备选的技术方案分析
数据通道的连接能力
自建Kafka
优点:
缺点:
消息队列MQTT方案
优点:
缺点:
弹性数据清洗的能力
大数据方案(Storm、Spark、Flink等)
优点:
缺点:
函数计算方案
优点:
缺点:
弹性数据访问的能力
传统应用的方案
优点:
缺点:
API Gateway+函数计算方案
优点:
缺点:
综述
在这个热力图信息收集清选与访问业务中,可以参考使用下图的解决方案完美实现。
重点接入步骤
MQTT到函数计算的介绍
请参考函数计算的微消息队列MQTT服务集成方案。
API网关通过函数计算提取数据的介绍
详情请参考API网关函数触发实例。
以Node.js为例:
module.exports.handler = function(event, context, callback) {
var event = JSON.parse(event);
var content = {
path: event.path,
method: event.method,
headers: event.headers,
queryParameters: event.queryParameters,
pathParameters: event.pathParameters,
body: event.body
// 您可以在这里编写您自己的逻辑。
// 从Redis提取数据的逻辑
}
var response = {
isBase64Encoded: false,
statusCode: '200',
headers: {
'x-custom-header': 'header value'
},
body: content
};
callback(null, response)
};
到此,相信大家对“怎么使用MQTT与函数计算做热力图”有了更深的了解,不妨来实际操作一番吧!这里是编程笔记网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!