热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

Zab:Zookeeper中的分布式一致性协议介绍

背景在分布式系统中实现一致性是件有挑战的事。经典的二阶段提交、三阶段提交都不能完美的解决这一问题,有关传统的的分布式系统一致性问题可以看这里。Paxos算法能完美地达到分布式系统的
背景

在分布式系统中实现一致性是件有挑战的事。经典的二阶段提交、三阶段提交都不能完美的解决这一问题,有关传统的的分布式系统一致性问题可以看这里。Paxos 算法能完美地达到分布式系统的一致性,但由于较为复杂,在实际工程上不是很合适,Zab 协议借鉴了 Paxos 的思想,并进行了改进,以满足工程上的实际需求。

设计目标
  • 一致性
  • 有序性:有序性是 Zab 协议与 Paxos 协议的一个核心区别。Zab 的有序性主要表现在两个方面:
    1. 全局有序:如果消息 a 在消息 b 之前被投递,那么在任何一台服务器,消息 a都会在消息 b 之前被投递。
    2. 因果有序:如果消息 a 在消息 b 之前发生(a 导致了 b),并被一起发送,则 a 始终在 b 之前被执行。
  • 容错性:有 2f+1 台服务器,只要有大于等于 f+1 台的服务器正常工作,就能完全正常工作。
协议内容

Zab 协议分为两大块:

  • 广播(boardcast):Zab 协议中,所有的写请求都由 leader 来处理。正常工作状态下,leader 接收请求并通过广播协议来处理。

  • 恢复(recovery):当服务初次启动,或者 leader 节点挂了,系统就会进入恢复模式,直到选出了有合法数量 follower 的新 leader,然后新 leader 负责将整个系统同步到最新状态。

    广播(boardcast)

    广播的过程实际上是一个简化的二阶段提交过程:

    1. Leader 接收到消息请求后,将消息赋予一个全局唯一的 64 位自增 id,叫做:zxid,通过 zxid 的大小比较即可实现因果有序这一特性。
    2. Leader 通过先进先出队列(通过 TCP 协议来实现,以此实现了全局有序这一特性)将带有 zxid 的消息作为一个提案(proposal)分发给所有 follower。
    3. 当 follower 接收到 proposal,先将 proposal 写到硬盘,写硬盘成功后再向 leader 回一个 ACK。
    4. 当 leader 接收到合法数量的 ACKs 后,leader 就向所有 follower 发送 COMMIT 命令,同事会在本地执行该消息。
    5. 当 follower 收到消息的 COMMIT 命令时,就会执行该消息

      《Zab:Zookeeper 中的分布式一致性协议介绍》 广播过程

      相比于完整的二阶段提交,Zab 协议最大的区别就是不能终止事务,follower 要么回 ACK 给 leader,要么抛弃 leader,在某一时刻,leader 的状态与 follower 的状态很可能不一致,因此它不能处理 leader 挂掉的情况,所以 Zab 协议引入了恢复模式来处理这一问题。从另一角度看,正因为 Zab 的广播过程不需要终止事务,也就是说不需要所有 follower 都返回 ACK 才能进行 COMMIT,而是只需要合法数量(2f+1 台服务器中的 f+1 台) 的follower,也提升了整体的性能。

    恢复(recovery)

由于之前讲的 Zab 协议的广播部分不能处理 leader 挂掉的情况,Zab 协议引入了恢复模式来处理这一问题。为了使 leader 挂了后系统能正常工作,需要解决以下两个问题:

  • 已经被处理的消息不能丢
  • 被丢弃的消息不能再次出现

已经被处理的消息不能丢

这一情况会出现在以下场景:当 leader 收到合法数量 follower 的 ACKs 后,就向各个 follower 广播 COMMIT 命令,同时也会在本地执行 COMMIT 并向连接的客户端返回「成功」。但是如果在各个 follower 在收到 COMMIT 命令前 leader 就挂了,导致剩下的服务器并没有执行都这条消息。

如图 1-1,消息 1 的 COMMIT 命令 Server1(leader)和 Server2(follower) 上执行了,但是 Server3 还没有收到消息 1 的 COMMIT 命令,此时 leader Server1 已经挂了,客户端很可能已经收到消息 1 已经成功执行的回复,经过恢复模式后需要保证所有机器都执行了消息 1。

《Zab:Zookeeper 中的分布式一致性协议介绍》 图 1-1

为了实现已经被处理的消息不能丢这个目的,Zab 的恢复模式使用了以下的策略:

  1. 选举拥有 proposal 最大值(即 zxid 最大) 的节点作为新的 leader:由于所有提案被 COMMIT 之前必须有合法数量的 follower ACK,即必须有合法数量的服务器的事务日志上有该提案的 proposal,因此,只要有合法数量的节点正常工作,就必然有一个节点保存了所有被 COMMIT 消息的 proposal 状态。
  2. 新的 leader 将自己事务日志中 proposal 但未 COMMIT 的消息处理。
  3. 新的 leader 与 follower 建立先进先出的队列, 先将自身有而 follower 没有的 proposal 发送给 follower,再将这些 proposal 的 COMMIT 命令发送给 follower,以保证所有的 follower 都保存了所有的 proposal、所有的 follower 都处理了所有的消息。
    通过以上策略,能保证已经被处理的消息不会丢

被丢弃的消息不能再次出现

这一情况会出现在以下场景:当 leader 接收到消息请求生成 proposal 后就挂了,其他 follower 并没有收到此 proposal,因此经过恢复模式重新选了 leader 后,这条消息是被跳过的。 此时,之前挂了的 leader 重新启动并注册成了 follower,他保留了被跳过消息的 proposal 状态,与整个系统的状态是不一致的,需要将其删除。

如图 1-2 ,在 Server1 挂了后系统进入新的正常工作状态后,消息 3被跳过,此时 Server1 中的 P3 需要被清除。

《Zab:Zookeeper 中的分布式一致性协议介绍》 图 1-2

Zab 通过巧妙的设计 zxid 来实现这一目的。一个 zxid 是64位,高 32 是纪元(epoch)编号,每经过一次 leader 选举产生一个新的 leader,新 leader 会将 epoch 号 +1。低 32 位是消息计数器,每接收到一条消息这个值 +1,新 leader 选举后这个值重置为 0。这样设计的好处是旧的 leader 挂了后重启,它不会被选举为 leader,因为此时它的 zxid 肯定小于当前的新 leader。当旧的 leader 作为 follower 接入新的 leader 后,新的 leader 会让它将所有的拥有旧的 epoch 号的未被 COMMIT 的 proposal 清除。

总结

个人认为 Zab 协议设计的优秀之处有两点,一是简化二阶段提交,提升了在正常工作情况下的性能;二是巧妙地利用率自增序列,简化了异常恢复的逻辑,也很好地保证了顺序处理这一特性。


推荐阅读
  • 收割机|篇幅_国内最牛逼的笔记,不接受反驳!!
    收割机|篇幅_国内最牛逼的笔记,不接受反驳!! ... [详细]
  • window下kafka的安装以及测试
    目录一、安装JDK(需要安装依赖javaJDK)二、安装Kafka三、测试参考在Windows系统上安装消息队列kafka一、安装JDKÿ ... [详细]
  • 前言无论是对于刚入行工作还是已经工作几年的java开发者来说,面试求职始终是你需要直面的一件事情。首先梳理自己的知识体系,针对性准备,会有事半功倍的效果。我们往往会把重点放在技术上 ... [详细]
  • ZooKeeper集群脑裂问题及其解决方案
    本文深入探讨了ZooKeeper集群中可能出现的脑裂问题,分析其成因,并提供了多种有效的解决方案,确保集群在高可用性环境下的稳定运行。 ... [详细]
  • 本文详细介绍了使用ZooKeeper构建高可用集群的方法,包括必要的软件环境准备、配置文件调整及集群启动等关键步骤。通常,一个ZooKeeper集群由奇数个节点组成,以确保Leader选举的有效性。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 探讨如何真正掌握Java EE,包括所需技能、工具和实践经验。资深软件教学总监李刚分享了对毕业生简历中常见问题的看法,并提供了详尽的标准。 ... [详细]
  • 全面解析运维监控:白盒与黑盒监控及四大黄金指标
    本文深入探讨了白盒和黑盒监控的概念,以及它们在系统监控中的应用。通过详细分析基础监控和业务监控的不同采集方法,结合四个黄金指标的解读,帮助读者更好地理解和实施有效的监控策略。 ... [详细]
  • java程序员_Java程序员最新职业规划,逆袭面经分享
    java程序员_Java程序员最新职业规划,逆袭面经分享 ... [详细]
  • 深入解析JVM垃圾收集器
    本文基于《深入理解Java虚拟机:JVM高级特性与最佳实践》第二版,详细探讨了JVM中不同类型的垃圾收集器及其工作原理。通过介绍各种垃圾收集器的特性和应用场景,帮助读者更好地理解和优化JVM内存管理。 ... [详细]
  • 深入解析Spring Cloud Ribbon负载均衡机制
    本文详细介绍了Spring Cloud中的Ribbon组件如何实现服务调用的负载均衡。通过分析其工作原理、源码结构及配置方式,帮助读者理解Ribbon在分布式系统中的重要作用。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 网络攻防实战:从HTTP到HTTPS的演变
    本文通过一系列日记记录了从发现漏洞到逐步加强安全措施的过程,探讨了如何应对网络攻击并最终实现全面的安全防护。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 本文探讨了MariaDB在当前数据库市场中的地位和挑战,分析其可能面临的困境,并提出了对未来发展的几点看法。 ... [详细]
author-avatar
挚爱—fruit
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有