热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【ZJUMachineLearning】卷积神经网络LeNet

卷积神经网络的概念由手工设计卷积核变成了自动学习卷积核。何为卷积核?我们在《信号与系统》中学到很多变换,如小波变换,傅里叶变换等。对于傅里叶变换:对于傅里叶变换中的卷积核,他的作用




卷积神经网络的概念

由手工设计卷积核变成了自动学习卷积核。
何为卷积核?
我们在《信号与系统》中学到很多变换,如小波变换,傅里叶变换等。

对于傅里叶变换:
在这里插入图片描述
对于傅里叶变换中的卷积核,他的作用是,和f(t)信号进行作用(这个作用就是先乘起来再加起来)

而我们学到这些变换,就是为了人为的找一个卷积核。
而对于图像处理,就是为了将卷积核和图像作用,产生一个特征,我们用多个卷积核提取多个特征。


术语

在这里插入图片描述


步长与特征图大小的关系

在这里插入图片描述

在这里插入图片描述


补零

对于一部分步长(一般是大于1的),可能卷积核无法遍历到其边缘部分,导致其无法参加运算,我们对其边缘部分进行补零,以防浪费像素。
在这里插入图片描述


权值共享

可以将图像卷积看成全连接网络的权值共享(weight sharing)
在这里插入图片描述
在这里插入图片描述
上面的卷积操作,等价于如下权值共享网络:
在这里插入图片描述

在这里插入图片描述


LeNet

在这里插入图片描述
第一步

要注意非线性变换(Relu)
在这里插入图片描述
第二步
对2*2的范围进行取平均,然后进行Relu变换。


反向传播时,对参数的偏导取1/4填入前面的神经元就可以。


第三步

用16个5 * 5 * 6的卷积核,Stride=1,作用到14 * 14 * 6的特征图上,得出16个10 * 10的特征图

第四步
取平均

第五步
将上面的16 * 5 * 5输入全连接层。

在这里插入图片描述

可以看出,整个网络的训练速度取决于卷积层(时间复杂度),参数个数取决于全连接层(空间复杂度)。

注意:所有线性变换后,要接着一个ReLu


Tensorflow实现LENET-5

在这里插入图片描述
第1层(CONV1)和第2层(AVG_POOL1)

sess = tf.InteractiveSession()
x = tf.placeholder(“float”, shape=[None, 784])
y_ = tf.placeholder(“float”, shape=[None, 10])
W_conv1 = weight_variable([5, 5, 1, 6])
b_conv1 = bias_variable([6])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1,’SAME’) + b_conv1)
h_pool1 = average_pool_2x2(h_conv1)

def conv2d(x, W, padding_method='SAME'):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding=padding_method)

def avg_pool_2x2(x, padding_method='SAME'):
return tf.nn.avg_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding= padding_method)

第3层(CONV2)和第4层(AVG_POOL2)

W_conv2 = weight_variable([5, 5, 6, 16])
b_conv2 = bias_variable([16])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = avg_pool_2x2(h_conv2)

三个全连接层

W_fc1 = weight_variable([5 * 5 * 16, 120])
b_fc1 = bias_variable([120])
h_pool2_flat = tf.reshape(h_pool2, [-1, 5*5*16])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([120, 84])
b_fc2 = bias_variable([84])
h_fc2 =tf.nn.relu(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
h_fc2_drop = tf.nn.dropout(h_fc2, keep_prob)
W_fc3 = weight_variable([84, 10])
b_fc3 = bias_variable([10])
y_cOnv=tf.nn.softmax(tf.matmul(h_fc2_drop, W_fc3) + b_fc3)
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.global_variables_initializer())
for i in range(10000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print "step %d, training accuracy %g"%(i, train_accuracy)
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print "test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})


推荐阅读
  • 不同优化算法的比较分析及实验验证
    本文介绍了神经网络优化中常用的优化方法,包括学习率调整和梯度估计修正,并通过实验验证了不同优化算法的效果。实验结果表明,Adam算法在综合考虑学习率调整和梯度估计修正方面表现较好。该研究对于优化神经网络的训练过程具有指导意义。 ... [详细]
  • 也就是|小窗_卷积的特征提取与参数计算
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了卷积的特征提取与参数计算相关的知识,希望对你有一定的参考价值。Dense和Conv2D根本区别在于,Den ... [详细]
  • 本文介绍了利用ARMA模型对平稳非白噪声序列进行建模的步骤及代码实现。首先对观察值序列进行样本自相关系数和样本偏自相关系数的计算,然后根据这些系数的性质选择适当的ARMA模型进行拟合,并估计模型中的位置参数。接着进行模型的有效性检验,如果不通过则重新选择模型再拟合,如果通过则进行模型优化。最后利用拟合模型预测序列的未来走势。文章还介绍了绘制时序图、平稳性检验、白噪声检验、确定ARMA阶数和预测未来走势的代码实现。 ... [详细]
  • IB 物理真题解析:比潜热、理想气体的应用
    本文是对2017年IB物理试卷paper 2中一道涉及比潜热、理想气体和功率的大题进行解析。题目涉及液氧蒸发成氧气的过程,讲解了液氧和氧气分子的结构以及蒸发后分子之间的作用力变化。同时,文章也给出了解题技巧,建议根据得分点的数量来合理分配答题时间。最后,文章提供了答案解析,标注了每个得分点的位置。 ... [详细]
  • Oracle分析函数first_value()和last_value()的用法及原理
    本文介绍了Oracle分析函数first_value()和last_value()的用法和原理,以及在查询销售记录日期和部门中的应用。通过示例和解释,详细说明了first_value()和last_value()的功能和不同之处。同时,对于last_value()的结果出现不一样的情况进行了解释,并提供了理解last_value()默认统计范围的方法。该文对于使用Oracle分析函数的开发人员和数据库管理员具有参考价值。 ... [详细]
  • 本文详细介绍了Spring的JdbcTemplate的使用方法,包括执行存储过程、存储函数的call()方法,执行任何SQL语句的execute()方法,单个更新和批量更新的update()和batchUpdate()方法,以及单查和列表查询的query()和queryForXXX()方法。提供了经过测试的API供使用。 ... [详细]
  • [大整数乘法] java代码实现
    本文介绍了使用java代码实现大整数乘法的过程,同时也涉及到大整数加法和大整数减法的计算方法。通过分治算法来提高计算效率,并对算法的时间复杂度进行了研究。详细代码实现请参考文章链接。 ... [详细]
  • 本文介绍了机器学习手册中关于日期和时区操作的重要性以及其在实际应用中的作用。文章以一个故事为背景,描述了学童们面对老先生的教导时的反应,以及上官如在这个过程中的表现。同时,文章也提到了顾慎为对上官如的恨意以及他们之间的矛盾源于早年的结局。最后,文章强调了日期和时区操作在机器学习中的重要性,并指出了其在实际应用中的作用和意义。 ... [详细]
  • 本文讨论了如何使用IF函数从基于有限输入列表的有限输出列表中获取输出,并提出了是否有更快/更有效的执行代码的方法。作者希望了解是否有办法缩短代码,并从自我开发的角度来看是否有更好的方法。提供的代码可以按原样工作,但作者想知道是否有更好的方法来执行这样的任务。 ... [详细]
  • IjustinheritedsomewebpageswhichusesMooTools.IneverusedMooTools.NowIneedtoaddsomef ... [详细]
  • 基于dlib的人脸68特征点提取(眨眼张嘴检测)python版本
    文章目录引言开发环境和库流程设计张嘴和闭眼的检测引言(1)利用Dlib官方训练好的模型“shape_predictor_68_face_landmarks.dat”进行68个点标定 ... [详细]
  • 欢乐的票圈重构之旅——RecyclerView的头尾布局增加
    项目重构的Git地址:https:github.comrazerdpFriendCircletreemain-dev项目同步更新的文集:http:www.jianshu.comno ... [详细]
  • 十大经典排序算法动图演示+Python实现
    本文介绍了十大经典排序算法的原理、演示和Python实现。排序算法分为内部排序和外部排序,常见的内部排序算法有插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。文章还解释了时间复杂度和稳定性的概念,并提供了相关的名词解释。 ... [详细]
  • 本文介绍了贝叶斯垃圾邮件分类的机器学习代码,代码来源于https://www.cnblogs.com/huangyc/p/10327209.html,并对代码进行了简介。朴素贝叶斯分类器训练函数包括求p(Ci)和基于词汇表的p(w|Ci)。 ... [详细]
  • 本文讨论了如何使用GStreamer来删除H264格式视频文件中的中间部分,而不需要进行重编码。作者提出了使用gst_element_seek(...)函数来实现这个目标的思路,并提到遇到了一个解决不了的BUG。文章还列举了8个解决方案,希望能够得到更好的思路。 ... [详细]
author-avatar
mobiledu2502883463
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有