热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

约瑟夫问题——算法优化

在华为的OJ自学平台上有个约瑟夫问题,不过它不是原来意义上的约瑟夫问题,而是其变体,做了这个题之后,有一点关于算法优化的小想法,因此想写下来。问题的描述如下:

在华为的OJ自学平台上有个约瑟夫问题,不过它不是原来意义上的约瑟夫问题,而是其变体,做了这个题之后,有一点关于算法优化的小想法,因此想写下来。

问题的描述如下:

 功能: 约瑟夫问题众所周知,原始的约瑟夫问题是这样的:有n个人,编号为1,2,..., n,站成一圈,

 每次第m个将会被处决,直到只剩下一个人。约瑟夫通过给出m来决定赦免其中的一个人。

 例如当n=6,m=5时,5,4,6,2,3将会被依次处决,而1将会幸免。

 假如有k个好人,和k个坏人,所有人站成一圈,前k个人是好人,后k个人是坏人,

 编写程序计算一个最小的m,使k个坏人都被处决,而不处决任何好人。

     

 输入: k 为正整数   

 输出: 

 返回: 最小的m,使k个坏人都被处决,而不处决任何好人。

一开始拿到这个题还真有点摸不着头脑,想来想去也不知如何下手,因为我在纸上随便试了几个数,感觉给定的k越大,所需的m值就可能会呈指数幂增长,即使能做出来,提交后肯定会计算超时。

不过,先管不了那么多了,上网搜一搜看有没有现成的代码,符合这个题目的没找到,解原始约瑟夫问题的到是有一大堆,这里的一篇不错,就先拿去分析了一下代码。核心代码就是以下这段了:

//i为元素下表,j代表当前要报的数
int i=0;
int j=1;
while(len>0){
if(a[i%n]>0){
if(j%m==0){//找到要出圈的人,并把圈中人数减一
System.out.print(a[i%n]+" ");
a[i%n]=-1;
j=1;
i++;
len--;
}else{
i++;
j++;
}
}else{//遇到空位了,就跳到下一位,但j不加一,也就是这个位置没有报数
i++;
}
}


这个算法的基本思路就是:先创建一个从1到n的递增数组,对数组进行遍历,找到要圈出的人,即计数器j为m的整数倍(j%m=0),将其打印出来,标记为-1,计数器重新回到1,索引加一,数组长度-1(实际长度并未减);若计时器j不是m的整数倍,则将计数器和索引i各自增1进入下一次循环。

由于采用数组,有一点不好的地方就是它的长度不可变,已经“删除”的数下次还会被判断,如果数组比较大,删除的数较多时,就会有大量无用的判断,因此决定采用用Java里的list试一试。为了不同实现方法的对比,将上面的核心算法提取为放方法,代码如下:

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
*使用数组实现约瑟夫环问题
*由m个人围成一个首尾相连的圈报数。
*从第一个人开始,从1开始报数,报到n的人出圈,
*剩下的人继续从1开始报数,直到所有的人都出圈为止。
*对于给定的m和n,求出所有人的出圈顺序.
*/
public class RingTest{
public static void main(String[] args){
System.out.println("程序说明如下:");
System.out.println("由m个人围成一个首尾相连的圈报数。从第一个人开始,从1开始报数,报到n的人出圈,剩下的人继续从1开始报数,直到所有的人都出圈为止。对于给定的m和n,求出所有人的出圈顺序.");

//提示输入总人数
System.out.println("请输入做这个游戏的总人数:");
Scanner sca=new Scanner(System.in);
int n=sca.nextInt();
//提示输入要出圈的数值
System.out.println("请输入要出圈的数值:");
int k=sca.nextInt();
System.out.println("按出圈的次序输出序号:");
long time1=System.nanoTime();
test1(n,k);
long time2=System.nanoTime();
System.out.println("用时1:"+(time2-time1));
test2(n,k);
long time3=System.nanoTime();
System.out.println("用时2:"+(time3-time2));
} private static void test1(int n,int m){
//创建有m个值的数组
int[] a=new int[n];
//初始长度,以后出圈一个,长度就减一
int len=n;
//给数组赋值
for(int i=0;i a[i]=i+1;
//i为元素下表,j代表当前要报的数
int i=0;
int j=1;
while(len>0){
if(a[i%n]>0){
if(j%m==0){//找到要出圈的人,并把圈中人数减一
System.out.print(a[i%n]+" ");
a[i%n]=-1;
j=1;
i++;
len--;
}else{
i++;
j++;
}
}else{//遇到空位了,就跳到下一位,但j不加一,也就是这个位置没有报数
i++;
}
}
}
private static void test2(int n,int m){
//创建有m个值的数组
List list=new ArrayList();
//初始长度,以后出圈一个,长度就减一
//给数组赋值
for(int i=0;i list.add(i+1);
}
//i为元素下表,j代表当前要报的数
int i=0;
int j=1;
while(n>0){
if(j%m==0){//找到要出圈的人,并把圈中人数减一
System.out.print(list.get(i%n)+" ");
list.remove(i%n);
j=1;
n--;
}else{
i++;
j++;
}
if(i>=n&&n>0)
i=i%n;
}
}
}

对于数据量比较少时,明显是数组占优势,因为list移除一个值之后,后面的值都会移动,但数据量大了后这个弱点就会被无效比较给抵消掉。

以下贴出将数组改为List的的核心算法:

//i为元素下表,j代表当前要报的数
int i=0;
int j=1;
while(n>0){
if(j%m==0){//找到要出圈的人,并把圈中人数减一
System.out.print(list.get(i%n)+" ");
list.remove(i%n);
j=1;
n--;
}else{
i++;
j++;
}
if(i>=n&&n>0)
i=i%n;
}相对于之前用数组,这里面少了个判断值是否小于0 if 条件语句,不过加了两句

if(i>=n&&n>0)
i=i%n;当然,上面的list.get(i%n)也可以改为list.get(i),除此之外,区别不大。以下还是贴出两者对比的完整代码:

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
*使用数组实现约瑟夫环问题
*由m个人围成一个首尾相连的圈报数。
*从第一个人开始,从1开始报数,报到n的人出圈,
*剩下的人继续从1开始报数,直到所有的人都出圈为止。
*对于给定的m和n,求出所有人的出圈顺序.
*/
public class RingTest{
public static void main(String[] args){
System.out.println("程序说明如下:");
System.out.println("由m个人围成一个首尾相连的圈报数。从第一个人开始,从1开始报数,报到n的人出圈,剩下的人继续从1开始报数,直到所有的人都出圈为止。对于给定的m和n,求出所有人的出圈顺序.");

//提示输入总人数
System.out.println("请输入做这个游戏的总人数:");
Scanner sca=new Scanner(System.in);
int n=sca.nextInt();
//提示输入要出圈的数值
System.out.println("请输入要出圈的数值:");
int k=sca.nextInt();
System.out.println("按出圈的次序输出序号:");
long time1=System.nanoTime();
test1(n,k);
long time2=System.nanoTime();
System.out.println("用时1:"+(time2-time1));
test2(n,k);
long time3=System.nanoTime();
System.out.println("用时2:"+(time3-time2));
} private static void test1(int n,int m){
//创建有m个值的数组
int[] a=new int[n];
//初始长度,以后出圈一个,长度就减一
int len=n;
//给数组赋值
for(int i=0;i a[i]=i+1;
//i为元素下表,j代表当前要报的数
int i=0;
int j=1;
while(len>0){
if(a[i%n]>0){
if(j%m==0){//找到要出圈的人,并把圈中人数减一
System.out.print(a[i%n]+" ");
a[i%n]=-1;
j=1;
i++;
len--;
}else{
i++;
j++;
}
}else{//遇到空位了,就跳到下一位,但j不加一,也就是这个位置没有报数
i++;
}
}
}
private static void test2(int n,int m){
//创建有m个值的数组
List list=new ArrayList();
//初始长度,以后出圈一个,长度就减一
//给数组赋值
for(int i=0;i list.add(i+1);
}
//i为元素下表,j代表当前要报的数
int i=0;
int j=1;
while(n>0){
if(j%m==0){//找到要出圈的人,并把圈中人数减一
System.out.print(list.get(i%n)+" ");
list.remove(i%n);
j=1;
n--;
}else{
i++;
j++;
}
if(i>=n&&n>0)
i=i%n;
}
}
}到了这里,我在想既然用了List链表,这里面就不用判断list里面的值了,毕竟点到的都被移出了,其余的都是有用的。而我们的目的是找到第m个,把它移出,然后接着找下一个第m个, 因此,我为什么还要一次一次i++、j++呢,干嘛不一次i+=m-1,j+=m-1,这样不是一次性跳到了下一个m个么?
因此,代码稍作更改,速度几乎减半。以下为修改后的方法:

private static void test2(int n,int m){
//创建有m个值的数组
List list=new ArrayList();
//初始长度,以后出圈一个,长度就减一
//给数组赋值
for(int i=0;i list.add(i+1);
}
//i为元素下表,j代表当前要报的数
int i=0;
int j=1;
while(n>0){
if(j%m==0){//找到要出圈的人,并把圈中人数减一
System.out.print(list.get(i)+" ");
list.remove(i);
j=1;
n--;
}else{
i+=m-1;
j+=m-1;
}
if(i>=n&&n>0)
i=i%n;
}
}这个原始约瑟夫算法的优化就先到此了。接着就按题目的要求答题了。
题目的要求是前k个是好人,后k个是坏人,只处决坏人而不出决绝好人,因此这个方法里就不需打印移除的数了,同时while里的循环也不用循环整个数组了,只需循环数组长度的一半就行了,还有这个方法的返回类型就可以改为boolean类型了,移除数的时候,只要一遇到好人,提供的m值就不满足条件,需要重新找m值了。
(注:鉴于问题有变化,以上的参数需做更改了:原来的n换为k,链表长度为2k)
以下就是再次修改后的代码了:

private static boolean isFit(List list,int k){
//i为元素下表,j代表当前要报的数
int i=0;
int j=1;
int len=list.size();
int n=len/2;
while(len>n){
if(j%k==0){
int value=list.get(i);
if(value<=n)
return false;
list.remove(i);
j=1;
len--;
}else{
i+=k-1;
j+=k-1;
}
if(i>=len)
i=i%len;
}
return true;
}接下来就是要通过给定不同的k&#20540;来找最小的m&#20540;。找最小&#20540;,最容易想到的就是对于给定的k&#20540;,从1开始试,试到该方法返回true时即为所需的k&#20540;。

于是程序的实现如下:

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class RingTest{
public static void main(String[] args){
System.out.println("程序说明如下:");
System.out.println("由m个人围成一个首尾相连的圈报数。从第一个人开始,从1开始报数,报到n的人出圈,剩下的人继续从1开始报数,直到所有的人都出圈为止。对于给定的m和n,求出所有人的出圈顺序.");

//提示输入总人数
System.out.println("请输入做这个游戏的好人数:");
Scanner sca=new Scanner(System.in);
int k=sca.nextInt();
//提示输入要出圈的数值
System.out.println("最小的m:");
boolean flag=false;
int c=0;//cycle
int m=1;
while(!flag){
List tmp=new ArrayList();
for(int j=0;j<2*k;j++){
tmp.add(j+1);
}
if(isFit(tmp,m)){
flag=true;
break;
}else{
m++;
}
c++;
}
System.out.print(m);
}
private static boolean isFit(List list,int k){
//i为元素下表,j代表当前要报的数
int i=0;
int j=1;
int len=list.size();
int n=len/2;
while(len>n){
if(j%k==0){//找到要出圈的人,并把圈中人数减一
int value=list.get(i);
if(value<=n)
return false;
list.remove(i);
j=1;
len--;
}else{
i+=k-1;
j+=k-1;
}
if(i>=len)
i=i%len;
}
return true;
}
} 这种找m的方法简直是太笨了,至少你可以给它划点范围啊,直接从m开始显然不明智。很明显,对于题目的要求时第一个要处决的是坏人,因此m的第一个尝试&#20540;的取&#20540;范围至少要在[k&#43;1,2k]的范围之内啊,若果这个范围不合适,那就说明m得从大于2k(即至少绕一圈)的&#20540;开始了。因此,我们可以对这个m取一个初略的范围限定,这样isFit方法的调用次数就再一次减半了。因此,可以对main方法里的代码稍作更改了,实现代码如下:

public static void main(String[] args){
System.out.println("程序说明如下:");
System.out.println("由m个人围成一个首尾相连的圈报数。从第一个人开始,从1开始报数,报到n的人出圈,剩下的人继续从1开始报数,直到所有的人都出圈为止。对于给定的m和n,求出所有人的出圈顺序.");

//提示输入总人数
System.out.println("请输入做这个游戏的好人数:");
Scanner sca=new Scanner(System.in);
int k=sca.nextInt();
//提示输入要出圈的数值
System.out.println("最小的m:");
boolean flag=false;
int c=0;//cycle
int m=0;
while(!flag){
for(int i=(2*c+1)*k+1;i<=2*k*(c+1);i++){
List tmp=new ArrayList();
for(int j=0;j<2*k;j++){
tmp.add(j+1);
}
if(isFit(tmp,i)){
flag=true;
m=i;
break;
}
}
c++;
}
System.out.print(m);
}

这段代码里加了一个c(即圈数),指的时从1输到m时绕好坏人围成圈的圈数。m的取&#20540;就被限定在[2k*c&#43;k&#43;1,2k*c&#43;2k]范围内。

终于,代码提交后顺利通过自学平台提供的测试用例。

写到这里,代码基本上达到了目的,不过,这个算法的优化并没有结束,因为当k的&#20540;达到14时,计算出m的结果就得好几分钟了。

完整实现代码如下:

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class RingTest{
public static void main(String[] args){
System.out.println("程序说明如下:");
System.out.println("由m个人围成一个首尾相连的圈报数。从第一个人开始,从1开始报数,报到n的人出圈,剩下的人继续从1开始报数,直到所有的人都出圈为止。对于给定的m和n,求出所有人的出圈顺序.");

//提示输入总人数
System.out.println("请输入做这个游戏的好人数:");
Scanner sca=new Scanner(System.in);
int k=sca.nextInt();
//提示输入要出圈的数值
System.out.println("最小的m:");
List list=new ArrayList();
for(int i=0;i<2*k;i++){
list.add(i+1);
}
boolean flag=false;
int c=0;//cycle
int m=0;
while(!flag){
for(int i=(2*c+1)*k+1;i<=2*k*(c+1);i++){
List tmp=new ArrayList();
for(int j=0;j<2*k;j++){
tmp.add(j+1);
}
if(isFit(tmp,i)){
flag=true;
m=i;
break;
}
}
c++;
}
System.out.print(m);
} private static boolean isFit(List list,int k){
//i为元素下表,j代表当前要报的数
int i=0;
int j=1;
int len=list.size();
int n=len/2;
while(len>n){
if(j%k==0){//找到要出圈的人,并把圈中人数减一
int value=list.get(i);
if(value<=n)
return false;
list.remove(i);
j=1;
len--;
}else{
i+=k-1;
j+=k-1;
}
if(i>=len)
i=i%len;
}
return true;
}
}

目前,我个人的思路有两个:

其一是每次循环都要建立一个List数组,这里可以考虑在循环外面建立一个list后,在循环里通过java提供的复制函数来复制,这应该比每次新建list要快;

其二是继续压缩m的取&#20540;范围,上面只提到第一次处决一个坏人时的m范围,处决第二个坏人也是有范围限制的,因此可以从这里入手。

思路就说到这里,具体实现就不细说了,读者如果有兴趣可以自己尝试着去完善!(*^__^*) 嘻嘻……


附OJ自学平台里的demo实现源码:

import java.util.ArrayList;
import java.util.List;
public final class Demo {
/*
功能: 约瑟夫问题众所周知,原始的约瑟夫问题是这样的:有n个人,编号为1,2,..., n,站成一圈,
每次第m个将会被处决,直到只剩下一个人。约瑟夫通过给出m来决定赦免其中的一个人。
例如当n=6,m=5时,5,4,6,2,3将会被依次处决,而1将会幸免。
假如有k个好人,和k个坏人,所有人站成一圈,前k个人是好人,后k个人是坏人,
编写程序计算一个最小的m,使k个坏人都被处决,而不处决任何好人。
输入: k 为正整数
输出:
返回: 最小的m,使k个坏人都被处决,而不处决任何好人。
*/
public static int getMinimumM(int K)
{
boolean flag=false;
int c=0;//cycle
int m=0;
while(!flag){
for(int i=(2*c+1)*K+1;i<=2*K*(c+1);i++){
List tmp=new ArrayList();
for(int j=0;j<2*K;j++){
tmp.add(j+1);
}
if(isFit(tmp,i)){
flag=true;
m=i;
break;
}
}
c++;
}
return m;
}
private static boolean isFit(List list,int k){
//i为元素下表,j代表当前要报的数
int i=0;
int j=1;
int len=list.size();
int n=len/2;
while(len>n){
if(j%k==0){
int value=list.get(i);
if(value<=n)
return false;
list.remove(i);
j=1;
len--;
}else{
i+=k-1;
j+=k-1;
}
if(i>=len)
i=i%len;
}
return true;
}
}

约瑟夫问题——算法优化,布布扣,bubuko.com


推荐阅读
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • 本文介绍如何使用 NSTimer 实现倒计时功能,详细讲解了初始化方法、参数配置以及具体实现步骤。通过示例代码展示如何创建和管理定时器,确保在指定时间间隔内执行特定任务。 ... [详细]
  • Java 中的 BigDecimal pow()方法,示例 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 本文探讨了如何通过最小生成树(MST)来计算严格次小生成树。在处理过程中,需特别注意所有边权重相等的情况,以避免错误。我们首先构建最小生成树,然后枚举每条非树边,检查其是否能形成更优的次小生成树。 ... [详细]
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • 探讨如何通过编程技术实现100个并发连接,解决线程创建顺序问题,并提供高效的并发测试方案。 ... [详细]
  • 深入理解 Oracle 存储函数:计算员工年收入
    本文介绍如何使用 Oracle 存储函数查询特定员工的年收入。我们将详细解释存储函数的创建过程,并提供完整的代码示例。 ... [详细]
  • 本题探讨了一种字符串变换方法,旨在判断两个给定的字符串是否可以通过特定的字母替换和位置交换操作相互转换。核心在于找到这些变换中的不变量,从而确定转换的可能性。 ... [详细]
  • Java 中 Writer flush()方法,示例 ... [详细]
  • 本文介绍了如何使用 Spring Boot DevTools 实现应用程序在开发过程中自动重启。这一特性显著提高了开发效率,特别是在集成开发环境(IDE)中工作时,能够提供快速的反馈循环。默认情况下,DevTools 会监控类路径上的文件变化,并根据需要触发应用重启。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 本文介绍了一款用于自动化部署 Linux 服务的 Bash 脚本。该脚本不仅涵盖了基本的文件复制和目录创建,还处理了系统服务的配置和启动,确保在多种 Linux 发行版上都能顺利运行。 ... [详细]
  • 本文介绍如何通过Windows批处理脚本定期检查并重启Java应用程序,确保其持续稳定运行。脚本每30分钟检查一次,并在需要时重启Java程序。同时,它会将任务结果发送到Redis。 ... [详细]
author-avatar
手机用户2502898863
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有