热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

预训练模型_NLP预训练模型百度ERNIE2.0的效果到底有多好附用户点评

ERNIE是百度自研的持续学习语义理解框架,该框架支持增量引入词汇(lexical)、语法 (syntactic) 、语义(semantic)等3个层次的自定义预训练任务,能够全面捕

ERNIE是百度自研的持续学习语义理解框架,该框架支持增量引入词汇(lexical)、语法 (syntactic) 、语义(semantic)等3个层次的自定义预训练任务,能够全面捕捉训练语料中的词法、语法、语义等潜在信息。

ERNIE2.0实现了在中英文16个任务上的最优效果,具体效果见下方列表。

一、ERNIE2.0中文效果验证

我们在 9 个任务上验证 ERNIE 2.0 中文模型的效果。这些任务包括:自然语言推断任务 XNLI;阅读理解任务 DRCD、DuReader、CMRC2018;命名实体识别任务 MSRA-NER (SIGHAN2006);情感分析任务 ChnSentiCorp;语义相似度任务 BQ Corpus、LCQMC;问答任务 NLPCC2016-DBQA 。

1、自然语言推断任务

技术图片

• XNLI

XNLI 是由 Facebook 和纽约大学的研究者联合构建的自然语言推断数据集,包括 15 种语言的数据。我们用其中的中文数据来评估模型的语言理解能力。[链接: facebookresearch/XNLI]

2、阅读理解任务

技术图片

*实验所用的 DuReader 抽取类、单文档子集为内部数据集。

*实验时将 DRCD 繁体数据转换成简体,繁简转换工具:skydark/nstools

*ERNIE 1.0 的预训练数据长度为 128,其他模型使用 512 长度的数据训练,这导致 ERNIE 1.0 BASE 在长文本任务上性能较差, 为此我们发布了 ERNIE 1.0 Base (max-len-512) 模型 (2019-07-29)

• DuReader

DuReader 是百度在自然语言处理国际顶会 ACL 2018 发布的机器阅读理解数据集,所有的问题、原文都来源于百度搜索引擎数据和百度知道问答社区,答案是由人工整理的。实验是在 DuReader 的单文档、抽取类的子集上进行的,训练集包含15763个文档和问题,验证集包含1628个文档和问题,目标是从篇章中抽取出连续片段作为答案。[链接: ]

• CMRC2018

CMRC2018 是中文信息学会举办的评测,评测的任务是抽取类阅读理解。[链接: ymcui/cmrc2018]

• DRCD

DRCD 是台达研究院发布的繁体中文阅读理解数据集,目标是从篇章中抽取出连续片段作为答案。我们在实验时先将其转换成简体中文。[链接: DRCKnowledgeTeam/DRCD]

3、命名实体识别任务

技术图片

• MSRA-NER (SIGHAN2006)

MSRA-NER (SIGHAN2006) 数据集由微软亚研院发布,其目标是识别文本中具有特定意义的实体,包括人名、地名、机构名。

4、情感分析任务

技术图片

• ChnSentiCorp

ChnSentiCorp 是一个中文情感分析数据集,包含酒店、笔记本电脑和书籍的网购评论。

5、问答任务

技术图片

• NLPCC2016-DBQA

NLPCC2016-DBQA 是由国际自然语言处理和中文计算会议 NLPCC 于 2016 年举办的评测任务,其目标是从候选中找到合适的文档作为问题的答案。[链接: ]

6、语义相似度

技术图片

*LCQMC 、BQ Corpus 数据集需要向作者申请,LCQMC 申请地址:LCQMC: A Large-scale Chinese Question Matching Corpus, BQ Corpus 申请地址:The BQ Corpus: A Large-scale Domain-specific Chinese Corpus For Sentence Semantic Equivalence Identification

• LCQMC

LCQMC 是在自然语言处理国际顶会 COLING 2018 发布的语义匹配数据集,其目标是判断两个问题的语义是否相同。[链接: LCQMC:A Large-scale Chinese Question Matching Corpus]

• BQ Corpus

BQ Corpus 是在自然语言处理国际顶会 EMNLP 2018 发布的语义匹配数据集,该数据集针对银行领域,其目标是判断两个问题的语义是否相同。[链接: The BQ Corpus: A Large-scale Domain-specific Chinese Corpus For Sentence Semantic Equivalence Identification]

二、英文效果验证

ERNIE 2.0 的英文效果验证在 GLUE 上进行。GLUE 评测的官方地址为 GLUE Benchmark ,该评测涵盖了不同类型任务的 10 个数据集,其中包含 11 个测试集,涉及到 Accuracy, F1-score, Spearman Corr,. Pearson Corr,. Matthew Corr., 5 类指标。GLUE 排行榜使用每个数据集的平均分作为总体得分,并以此为依据将不同算法进行排名。

1、GLUE - 验证集结果

技术图片

我们使用单模型的验证集结果,来与 BERT/XLNet 进行比较。

2、GLUE - 测试集结果

技术图片

由于 XLNet 暂未公布 GLUE 测试集上的单模型结果,所以我们只与 BERT 进行单模型比较。上表为ERNIE 2.0 单模型在 GLUE 测试集的表现结果。

三、真实用户点评

“评分表数据很炸裂啊”

“我觉得你们这个模型太棒了,既能学习到实体embedding,又能学到Word embedding”

“ERNIE2.0创新地将过去单一的预训练流程拆解为串行的多个预训练任务,无疑是最大的贡献”

“ERNIE2.0的使用很方便”

“通过预训练模型BERT, ERNIE, BERT-wwm在公开数据集的对比,发现ERNIE表现较好,原因是采用了非正式数据进行预训练”

“ERNIE2.0创新性的运用了连续增量式多任务学习”

大家用了都说好,感觉来试用吧。

 

划重点!

查看ERNIE模型使用的完整内容和教程,请点击下方链接,建议Star收藏到个人主页,方便后续查看。

GitHub:PaddlePaddle/ERNIE

技术图片

版本迭代、最新进展都会在GitHub第一时间发布,欢迎持续关注!

也邀请大家加入ERNIE官方技术交流QQ群:760439550,可在群内交流技术问题,会有ERNIE的研发同学为大家及时答疑解惑。

技术图片


推荐阅读
  • Elasticsearch 嵌套调用中动态类导致数据返回异常分析与解决方案 ... [详细]
  • Android目录遍历工具 | AppCrawler自动化测试进阶(第二部分):个性化配置详解
    终于迎来了“足不出户也能为社会贡献力量”的时刻,但有追求的测试工程师绝不会让自己的生活变得乏味。与其在家消磨时光,不如利用这段时间深入研究和提升自己的技术能力,特别是对AppCrawler自动化测试工具的个性化配置进行详细探索。这不仅能够提高测试效率,还能为项目带来更多的价值。 ... [详细]
  • 中文分词_中文分词技术小结几大分词引擎的介绍与比较
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了中文分词技术小结几大分词引擎的介绍与比较相关的知识,希望对你有一定的参考价值。笔者想说:觉得英文与中文分词有很大的区别, ... [详细]
  • 如何在jieba分词中加自定义词典_常见中文分词包比较
    1jiebajieba.cut方法接受三个输入参数:需要分词的字符串;cut_all参数用来控制是否采用全模式;HMM参数用来控制是否使用HMM模型ji ... [详细]
  • CCF 100w+奖池大赛启动!百度高级工程师带你玩转NLP 、CV赛题!
    2021年大数据与AI领域年度盛事——第九届CCF大数据与计算智能大赛已开赛近一个月,你的队伍是否已荣登top榜!百度发布NLP领域“千言-问题匹配鲁棒 ... [详细]
  • 作为140字符的开创者,Twitter看似简单却异常复杂。其简洁之处在于仅用140个字符就能实现信息的高效传播,甚至在多次全球性事件中超越传统媒体的速度。然而,为了支持2亿用户的高效使用,其背后的技术架构和系统设计则极为复杂,涉及高并发处理、数据存储和实时传输等多个技术挑战。 ... [详细]
  • 掌握PHP框架开发与应用的核心知识点:构建高效PHP框架所需的技术与能力综述
    掌握PHP框架开发与应用的核心知识点对于构建高效PHP框架至关重要。本文综述了开发PHP框架所需的关键技术和能力,包括但不限于对PHP语言的深入理解、设计模式的应用、数据库操作、安全性措施以及性能优化等方面。对于初学者而言,熟悉主流框架如Laravel、Symfony等的实际应用场景,有助于更好地理解和掌握自定义框架开发的精髓。 ... [详细]
  • Go语言中的高效排序与搜索算法解析
    在探讨Go语言中高效的排序与搜索算法时,本文深入分析了Go语言提供的内置排序功能及其优化策略。通过实例代码,详细讲解了如何利用Go语言的标准库实现快速、高效的排序和搜索操作,为开发者提供了实用的编程指导。 ... [详细]
  • Windows环境下详细教程:如何搭建Git服务
    Windows环境下详细教程:如何搭建Git服务 ... [详细]
  • Android平台生活辅助应用的设计与开发实现
    随着移动互联网技术的迅猛发展,Android操作系统已成为移动设备中的主流平台。本文探讨了基于Android平台的生活辅助应用设计与开发,旨在通过创新的功能和用户友好的界面,提升用户的日常生活质量。研究不仅涵盖了应用的核心功能实现,还深入分析了用户体验优化的方法,为同类应用的开发提供了有价值的参考。 ... [详细]
  • 利用Jenkins与SonarQube集成实现高效代码质量检测与优化
    本文探讨了通过在 Jenkins 多分支流水线中集成 SonarQube,实现高效且自动化的代码质量检测与优化方法。该方案不仅提高了开发团队的代码审查效率,还确保了软件项目的持续高质量交付。 ... [详细]
  • 内网渗透技术详解:PTH、PTT与PTK在域控环境中的应用及猫盘内网穿透配置
    本文深入探讨了内网渗透技术,特别是PTH、PTT与PTK在域控环境中的应用,并详细介绍了猫盘内网穿透的配置方法。通过这些技术,安全研究人员可以更有效地进行内网渗透测试,解决常见的渗透测试难题。此外,文章还提供了实用的配置示例和操作步骤,帮助读者更好地理解和应用这些技术。 ... [详细]
  • 综合实训 201521440015
    Chinesepeople’publicsecurityuniversity网络对抗技术实验报告实验五综合渗透学生姓名常泽远年级15区队4指导教师高见信息技术与网络安全学院2018 ... [详细]
  • 5分钟学会 gRPC
    5分钟学会gRPC-介绍我猜测大部分长期使用Java的开发者应该较少会接触gRPC,毕竟在Java圈子里大部分使用的还是DubboSpringClound这两类服务框架。我也是 ... [详细]
  • 网站秒开算什么,Google
    作为一家活在Web世界的公司,Google对提升网页性能一直是不遗余力。今天,为了让用户能够更快地浏览网页,Google联合8家科技公司以及近30家新闻机构一起发布了一个名为移动页 ... [详细]
author-avatar
GYuan83_844
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有