热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

预计2021年中国大数据市场规模将达到898亿元

预计,2021,年,中国,大,数据,市场规模,将

【大咖・来了 第7期】10月24日晚8点观看《智能导购对话机器人实践》

随着移动互联网、智能终端和数据传感器的出现,数据正以超出想象的速度快速增长。据相关数据报告显示,2014年全球数据总量为6.2ZB(万亿GB),2015年全球数据总量达8.6ZB。目前全球数据的增长速度在每年40%左右,预计到2020年全球的数据总量将达到40ZB。

整体来看,中国的大数据产业初具规模,整个市场保持高速增长的态势。作为标志性的大数据元年,2015年中国大数据市场规模达到115.9亿元,2016年达到168亿元,预计到2021年中国大数据市场规模将达到898亿元。

技术创新迭代有序

现阶段,一大批大数据相关的企业在Hadoop&Spark大数据技术开发、数据挖掘主要算法、大并发数据物理存储与处理技术,自主分析技术,智能平台服务,特定领域研发数据分析工具,语音识别、图像理解、文本挖掘等机器深度学习方法方面,取得较大成果。在平台建设方面,阿里、腾讯等企业服务器单集群规模达到上万台,具备建设和运维超大规模大数据平台的技术实力。

大数据技术前景刺激人才建设。此前包括北京大学、人民大学等35所国内高等学府申报大数据专业。于此同时高校联合企业的产学研合作项目发展如火如荼。以深圳大学计算机软件学院为例,与中琛源科技等企业展开包括技术人员培训、科研成果落地试验、大数据平台技术研发等多项合作,促进技术交流,不断创新出新技术、新产品、新业态和新模式。

“大数据+”纵深发展成重点

在国家“十三五”战略规划、“互联网+”和“中国制造2025”等重大国家战略中,明确为大数据应用,大数据产业发展指明了方向。

现阶段,“大数据+”产业发展呈现两方面的深度应用。一方面,为用户“画像”,让企业对用户进行细分,提升业务精准度成为热门,也能够根据业务需求定义用户标签,并且直接利用组合功能创建新标签,从而迅速找到目标用户。

除消费产业大数据之外,现阶段,大数据应用还在向产业互联网方向延伸。大数据应用技术不断开发、完善,越来越多的“数据信息孤岛”被打破,呈现跨行业、跨领域的数据交流与融合。如智慧城市、智能医疗、智慧农业、大数据金融、教育等。

比较典型的是金融和汽车领域。随着大数据与金融保险行业的融合,将衍生出差异分级式的保险定价模式。随着车联网的加速发展,汽车后市场将迎来变革。整车制造商和互联网厂商将基于用户数据和车辆行驶数据实现跨界竞争等。

数字产业生态发展或是未来关键

据国际市场调研机构IDC指出,当前依托移动互联网、云、大数据为核心的数字化转型已然成为所有企业应对挑战的主要战略。预计到2018年,全球1000强企业的67%,中国1000强企业中的50%都将把数字化转型作为企业的战略核心。然而,企业依托大数据创新转型过程中,也面临技术储备不足、人才匮乏、数字战略模糊及战术欠缺等制约,企业发展大数据成本过高,数字化转型风险颇高。

对于企业而言,数据不是关键,以数据应用为核心,提供集数据分析及决策于一体的数字化生态模型才最重要。比如,建立一套统一的数据标准,将企业多维度、多场景的数据放在同一个数据综合平台整理、分析、共享,这样企业就可以通过平台上的大数据,直观清晰地了解企业自身涉及到日常管理、员工考勤、销售业绩、营销推广、客户服务等情况,并能提前预测,指导中小企业及时、精准制定策略。从而降低企业大数据成本、人力成本、决策成本等。只有通过数据分析,挖掘企业存储数据背后更深的价值,才能真正让数据落到实际的应用场景中去。

未来,大数据产业更加开放,并向生态化发展,以满足各行业的特性去求和不同用户的个性化需求。“数字生态并不局限于服务特定的行业或领域,而是帮助各行各业的企业用户,提供综合的数据云服务,包括移动办公,数字营销,精准客户服务等,帮助企业用户实现自身能力和产业的升级。”让我们一起期待大数据打通各行业,串联生活的每个角落,给我们带来更多的数字化惊喜。


推荐阅读
  • 知识图谱与图神经网络在金融科技中的应用探讨
    本文详细介绍了融慧金科AI Lab负责人张凯博士在2020爱分析·中国人工智能高峰论坛上的演讲,探讨了知识图谱与图神经网络模型如何在金融科技领域发挥重要作用。 ... [详细]
  • 深入浅出:Hadoop架构详解
    Hadoop作为大数据处理的核心技术,包含了一系列组件如HDFS(分布式文件系统)、YARN(资源管理框架)和MapReduce(并行计算模型)。本文将通过实例解析Hadoop的工作原理及其优势。 ... [详细]
  • 本文详细介绍了Python编程语言的学习路径,涵盖基础语法、常用组件、开发工具、数据库管理、Web服务开发、大数据分析、人工智能、爬虫开发及办公自动化等多个方向。通过系统化的学习计划,帮助初学者快速掌握Python的核心技能。 ... [详细]
  • 深入解析:主流开源分布式文件系统综述
    本文详细探讨了几款主流的开源分布式文件系统,包括HDFS、MooseFS、Lustre、GlusterFS和CephFS,重点分析了它们的元数据管理和数据一致性机制,旨在为读者提供深入的技术见解。 ... [详细]
  • 大数据核心技术解析
    本文深入探讨了大数据技术的关键领域,包括数据的收集、预处理、存储管理、以及分析挖掘等方面,旨在提供一个全面的技术框架理解。 ... [详细]
  • 全面解读Apache Flink的核心架构与优势
    Apache Flink作为大数据处理领域的新兴力量,凭借其独特的流处理能力和高效的批处理性能,迅速获得了广泛的关注。本文旨在深入探讨Flink的关键技术特点及其应用场景,为大数据处理提供新的视角。 ... [详细]
  • 时序数据是指按时间顺序排列的数据集。通过时间轴上的数据点连接,可以构建多维度报表,揭示数据的趋势、规律及异常情况。 ... [详细]
  • 面对众多的数据分析工具,如何选择最适合自己的那一个?对于初学者而言,了解并掌握几种核心工具是快速入门的关键。本文将从数据处理的不同阶段出发,推荐三种广泛使用的数据分析工具。 ... [详细]
  • 龙蜥社区开发者访谈:技术生涯的三次蜕变 | 第3期
    龙蜥社区的开发者们通过自己的实践和经验,推动着开源技术的发展。本期「龙蜥开发者说」聚焦于一位资深开发者的三次技术转型,分享他在龙蜥社区的成长故事。 ... [详细]
  • 数据集成策略:ETL与ELT架构对比及工具选择
    随着企业信息化的深入发展,‘数据孤岛’问题日益突出,阻碍了数据的有效利用与整合。本文探讨了如何通过构建数据仓库解决这一问题,重点分析了ETL与ELT两种数据处理架构的特点及适用场景,为企业选择合适的ETL工具提供了指导。 ... [详细]
  • 解决getallheaders函数导致的500错误及8种服务器性能优化策略
    本文探讨了解决getallheaders函数引起的服务器500错误的方法,并介绍八种有效的服务器性能优化技术,包括内存数据库的应用、Spark RDD的使用、缓存策略的实施、SSD的引入、数据库优化、IO模型的选择、多核处理策略以及分布式部署方案。 ... [详细]
  • 构建基于Python的用户画像系统
    用户画像在现代企业运营中扮演着重要角色,尤其在大数据分析和精准营销领域。本文旨在介绍用户画像的基础概念及其重要性,并通过Python编程语言实现一个基础的用户画像系统。 ... [详细]
  • 本文探讨了数据挖掘的全面理解和其理论基础,强调了数据挖掘在现代社会和经济活动中扮演的关键角色。通过对数据的深入分析,我们可以揭示隐藏在大量信息背后的模式和趋势。 ... [详细]
  • Java虚拟机及其发展历程
    Java虚拟机(JVM)是每个Java开发者日常工作中不可或缺的一部分,但其背后的运作机制却往往显得神秘莫测。本文将探讨Java及其虚拟机的发展历程,帮助读者深入了解这一关键技术。 ... [详细]
  • 本文详细介绍了如何使用NumPy、Pandas和Matplotlib进行数据分析和数据可视化。通过具体的代码示例,帮助读者更好地理解和应用这些强大的Python库。 ... [详细]
author-avatar
WYY
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有