热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

用pandas库修改excel文件里的内容,并把excel文件格式存为csv格式,再将csv格式改为html格式

假设有Excel文件data.xlsx,其中内容为:     ID age height    sex weight张三  1  39    181 female     85李四  2  40    180   male     80王五  3  38    178 female     78赵六  4  59    1

假设有Excel文件data.xlsx,其中内容为:

         ID  age  height     sex  weight
张三   1   39     181  female      85
李四   2   40     180    male      80
王五   3   38     178  female      78
赵六   4   59     170    male      66

 

现在需要将这个Excel文件中的数据读入pandas,并且在后续的处理中不关心ID列,还需要把sex列的female替换为1,把sex列的male替换为0。本文演示有关的几个操作。

(1)导入pandas模块

>>> import pandas as pd

 

(2)把Excel文件中的数据读入pandas

df = pd.read_excel('data.xlsx')
df

执行效果:

         ID  age  height     sex  weight
张三   1   39     181  female      85
李四   2   40     180    male      80
王五   3   38     178  female      78
赵六   4   59     170    male      66

 

(3)删除ID列

可以得到新的DataFrame:

>>> df.drop('ID', axis=1)
         age  height     sex  weight
张三   39     181  female      85
李四   40     180    male      80
王五   38     178  female      78
赵六   59     170    male      66

 

也可以直接在原DataFrame上原地删除:

df.drop('ID', axis=1, inplace=True)
df

 


         age  height     sex  weight
张三   39     181  female      85
李四   40     180    male      80
王五   38     178  female      78
赵六   59     170    male      66

 

(4)替换sex列

方法一:使用replace()方法替换sex列,得到新的DataFrame,如果指定参数inplace=True,则可以原地替换。

>>> df.replace({'female':1, 'male':0})
         age  height  sex  weight

df.replace({'female':1, 'male':0})

 

            age    height  sex  weight


张三   39     181    1      85
李四   40     180    0      80
王五   38     178    1      78
赵六   59     170    0      66

 

方法二:使用map()方法+lambda表达式,原地替换。

df1 = df[:]
df1['sex'] = df1['sex'].map(lambda x:1 if x=='female' else 0)
df1

 

         age  height  sex  weight
张三   39     181    1      85
李四   40     180    0      80
王五   38     178    1      78
赵六   59     170    0      66

 

方法三:使用map()方法+字典,原地替换。

df1 = df[:]
df1['sex'] = df1['sex'].map({'female':1, 'male':0})
df1

 

         age  height  sex  weight
张三   39     181    1      85
李四   40     180    0      80
王五   38     178    1      78
赵六   59     170    0      66

 

方法四:使用loc类,原地替换。

>>>

df1 = df[:]
>>> df1.loc[df['sex']=='female', 'sex'] = 1
>>> df1.loc[df['sex']=='male', 'sex'] = 0
>>> df1

 

         age  height sex  weight
张三   39     181   1      85
李四   40     180   0      80
王五   38     178   1      78
赵六   59     170   0      66

二、运用上述功能进行实战

1、先读取一个excel文件:

代码如下:

df = pd.read_excel('file:///D:/文档/Python成绩.xlsx', index_col=None, na_values=['NA'])  # 读取excel文件中的数据

如果想知道文件是否读取成功可以用print函数将数据输出

如:

print(df)

然后会显示文件的数据,效果如下:

用pandas库修改excel文件里的内容,并把excel文件格式存为csv格式,再将csv格式改为html格式

 

 2、修改excel文件内容:

运用上述的  方法三:使用map()方法+字典,原地替换。

现在要将优秀改为90,良好改为80,及格改为60

代码如下:

1 df1=df[:]
2 df1['第二次']=df1['第二次'].map({'优秀':90,'良好':80,'及格':60})
3 df1['第三次:圆周率']=df1['第三次:圆周率'].map({'优秀':90,'良好':80,'及格':60})
4 df1['第四次:汉诺塔']=df1['第四次:汉诺塔'].map({'优秀':90,'良好':80,'及格':60})
5 df1['第五次:jieba库']=df1['第五次:jieba库'].map({'优秀':90,'良好':80,'及格':60})
6 df1['第六次:图片处理']=df1['第六次:图片处理'].map({'优秀':90,'良好':80,'及格':60})

效果如下:

用pandas库修改excel文件里的内容,并把excel文件格式存为csv格式,再将csv格式改为html格式

三、再将上述的NaN改为0

只需要用数据清洗之缺失数据填充fillna()就可以完成

运行代码如下:

df1=df1.fillna(0)
print(df1)

效果如下:

用pandas库修改excel文件里的内容,并把excel文件格式存为csv格式,再将csv格式改为html格式

四、最后将excel文件保存为csv文件

代码如下:

df1.to_csv('D:/文档\\thon.csv')

最后会在你保存的文件你多了一个csv文件。

五、同时可以将csv文件保存为html格式

方法一(用工具实现):

  代码如下:

 df1.to_html('d:\\st.html')

同样会在你保存的文件夹中会多出一个html格式的文件

方法二:

  代码如下:

seg1 = '''
\n\n\n

2016年7月部分大中城市新建住宅价格指数

\n''' seg2 = "\n" seg3 = "
\n\n
" def fill_data(locls): seg = '{}{}{}{}\n'.format(*locls) return seg fr = open("D:\\文档\Python123.csv", "r",encoding="utf-8-sig") ls = [] for line in fr: line = line.replace("\n","") ls.append(line.split(",")) fr.close() fw = open("D:\\文档\Python5.html", "w") fw.write(seg1) fw.write('{}\n{}\n{}\n{}\n'.format(*ls[0])) fw.write(seg2) for i in range(len(ls)-1): fw.write(fill_data(ls[i+1])) fw.write(seg3) fw.close()

 


推荐阅读
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • 根据最新发布的《互联网人才趋势报告》,尽管大量IT从业者已转向Python开发,但随着人工智能和大数据领域的迅猛发展,仍存在巨大的人才缺口。本文将详细介绍如何使用Python编写一个简单的爬虫程序,并提供完整的代码示例。 ... [详细]
  • 本文介绍如何使用Python进行文本处理,包括分词和生成词云图。通过整合多个文本文件、去除停用词并生成词云图,展示文本数据的可视化分析方法。 ... [详细]
  • 本文详细介绍了Python中文件的基本操作,包括打开、读取、写入和关闭文件的方法,并通过实例展示了如何将Excel文件转换为CSV文件以及进一步转换为HTML文件。此外,还涉及了成绩等级替换的具体实现。 ... [详细]
  • 本文介绍如何使用 Python 获取文件和图片的创建、修改及拍摄日期。通过多种方法,如 PIL 库的 _getexif() 函数和 os 模块的 getmtime() 和 stat() 方法,详细讲解了这些技术的应用场景和注意事项。 ... [详细]
  • 使用Pandas高效读取SQL脚本中的数据
    本文详细介绍了如何利用Pandas直接读取和解析SQL脚本,提供了一种高效的数据处理方法。该方法适用于各种数据库导出的SQL脚本,并且能够显著提升数据导入的速度和效率。 ... [详细]
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
  • python时间序列之ADF检验(1)
    读取数据,pd.read_csv默认生成DataFrame对象,需将其转换成Series对象DataFrame和Series是pandas中最常见的2 ... [详细]
  • 主板市盈率、市净率及股息率的自动化抓取
    本文介绍了如何通过Python脚本自动从中国指数有限公司网站抓取主板的市盈率、市净率和股息率等关键财务指标,并将这些数据存储到CSV文件中。涉及的技术包括网页解析、正则表达式以及异常处理。 ... [详细]
  • 本文探讨了 Objective-C 中的一些重要语法特性,包括 goto 语句、块(block)的使用、访问修饰符以及属性管理等。通过实例代码和详细解释,帮助开发者更好地理解和应用这些特性。 ... [详细]
  • 本文介绍如何使用 Python 提取和替换 .docx 文件中的图片。.docx 文件本质上是压缩文件,通过解压可以访问其中的图片资源。此外,我们还将探讨使用第三方库 docx 的方法来简化这一过程。 ... [详细]
  • 本文介绍了如何通过 Maven 依赖引入 SQLiteJDBC 和 HikariCP 包,从而在 Java 应用中高效地连接和操作 SQLite 数据库。文章提供了详细的代码示例,并解释了每个步骤的实现细节。 ... [详细]
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • 本文旨在探讨如何利用决策树算法实现对男女性别的分类。通过引入信息熵和信息增益的概念,结合具体的数据集,详细介绍了决策树的构建过程,并展示了其在实际应用中的效果。 ... [详细]
  • ˂p优秀的马里奥YouprobablywanttomakethecreationoftheformuladynamicsoeachrowofCta ... [详细]
author-avatar
女人放聪明点碧
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有