热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

一个RandomizedSearchCV和GridSearchCV组合使用调参的例子先随机大致搜索,再网格精细化搜索

温度预测示例&参数优化工具RandomizedSearchCVtaon关注0.1292019.12.0618:18:08字数2,203阅读523一般情况下,我们做
温度预测示例&参数优化工具RandomizedSearchCV

taon关注

0.1292019.12.06 18:18:08字数 2,203阅读 523

一般情况下,我们做数据挖掘任务都是按照“数据预处理 - 特征工程 - 构建模型(使用默认参数或经验参数) - 模型评估 - 参数优化 - 模型固定”这样一个流程来处理问题。这一小节,我们要讨论的主题就是参数优化,前面我们讨论过GridSearchCV(网格搜索)这个工具,它是对我们的参数进行组合,选取效果最好的那组参数。

 

data mining.jpg

这一节,我们探索下参数优化当中的另一个工具RandomizedSearchCV(随机搜索),这名字咋一听感觉有点不太靠谱,对,它是有点不太靠谱,但为什么我们还要用它呢?因为它的效率高,它可以快速地帮助我们确定一个参数的大概范围,然后我们再使用网格搜索确定参数的精确值。就像警察抓犯人一样,先得快速地确认罪犯的活动区域,然后在该区域内展开地毯式搜索,这样效率更高。

这一小节,我们以随机森林模型作为例子,通过演示一个完整的建模过程,来说明RandomizedSearchCV的用法。当然这个工具不是随机森林特有的,它可以应用于任何模型的参数优化当中。

随机森林模型:
官方文档:https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html?highlight=randomforestr#sklearn.ensemble.RandomForestRegressor

RandomForestRegressor.png

 

从上图可以看出随机森林模型有很多参数,如:n_estimators, max_depth, min_samples_split, min_samples_leaf,max_features,bootstrap等。每一个参数都会对最终结果产生影响,同时每一个参数又有着众多的取值,我们的目标是找到最优的参数组合,使得我们的模型效果最好。

RandomizedSearchCV工具:
官方文档:
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html?highlight=randomized#sklearn.model_selection.RandomizedSearchCV

RandomizedSearchCV.png

 

RandomizedSearchCV参数说明:

  • estimator:我们要传入的模型,如KNN,LogisticRegression,RandomForestRegression等。
  • params_distributions:参数分布,字典格式。将我们所传入模型当中的参数组合为一个字典。
  • n_iter:随机寻找参数组合的数量,默认值为10。
  • scoring:模型的评估方法。在分类模型中有accuracy,precision,recall_score,roc_auc_score等,在回归模型中有MSE,RMSE等。
  • n_jobs:并行计算时使用的计算机核心数量,默认值为1。当n_jobs的值设为-1时,则使用所有的处理器。
  • iid:bool变量,默认为deprecated,返回值为每折交叉验证的值。当iid = True时,返回的是交叉验证的均值。
  • cv:交叉验证的折数,最新的sklearn库默认为5。

接下来,我们采用温度数据集作为例子,来演示RandomizedSearchCV的用法。我们将进行一个完整的数据建模过程:数据预处理 - 模型搭建 - RandomizedSearchCV参数优化 - GridSearchCV参数优化 - 确定最优参数,确定模型

温度数据集:链接:https://pan.baidu.com/s/1q10_Vz7ujuu8oCOqysNU7A
提取码:bxcr

任务目标:基于昨天和前天的一些历史天气数据,建立模型,预测当天的最高的真实温度。

数据集中主要特征说明:

  • ws_1:昨天的风速。
  • prcp_1:昨天的降水量。
  • snwd_1:昨天的降雪厚度。
  • temp_1:昨天的最高温度。
  • temp_2:前天的最高温度。
  • average:历史中这一天的平均最高温度。
  • actual:当天的真实最高温度。

建模完整过程演示:

#导入数据分析的两大工具包
import numpy as np
import pandas as pd#读取数据
df = pd.read_csv('D:\\Py_dataset\\temps_extended.csv')
df.head()
#查看数据的规模
df.shape
(2191, 12)#该数据集有2191个样本,每个样本有12个特征。

1.数据预处理

该数据集整体上是比较干净的,没有缺失值和异常值。这一步我们熟悉下数据预处理的基本过程。

# 1.查看数据集的基本信息
df.info()

df info.png

从上述结果可以看出这份数据集的整体情况。一共2191个样本,索引从0开始,截止于2190。一共12个特征,每个特征的数量为2191,缺失值情况(non-null),类型(int64 or object or float64),内存使用205.5KB。

由于数据没有缺失值,所以我们不需要做缺失值处理。接下来我们看数据类型,由于计算机只能识别数值型数据,所以我们必须将数据集中的非数值型数据转化为数值型数据。该数据集中只有"weekday"是object类型,由于我们要预测的是今天的温度值,所以日期数据(如昨天是几号,星期几)对我们的结果没有什么影响,将这些日期数据删掉。数据集中有一个"friend"特征,该值的意思可能是朋友的猜测结果,在建模过程中,我们暂不关注这个特征,所以将"friend"特征也删掉。

df = df.drop(['year','month','day','weekday','friend'],axis = 1)
df.head()

clean-data.png

2.数据切分

当我们完成了数据集清洗之后,接下来就是将原始数据集切分为特征(features)和标签(labels)。接着将特征和标签再次切分为训练特征,测试特征,训练标签和测试标签。

#导入数据切分模块
from sklearn.model_selection import train_test_split
#提取数据标签
labels = df['actual']
#提取数据特征
features = df.drop('actual',axis = 1)#将数据切分为训练集和测试集
train_features,test_features,train_labels,test_labels = train_test_split(features,labels,
test_size = 0.3,random_state = 0)print('训练特征的规模:',train_features.shape)
print('训练标签的规模:',train_labels.shape)
print('测试特征的规模:',test_features.shape)
print('测试标签的规模:',test_labels.shape)#切分之后的结果
训练特征的规模: (1533, 6)
训练标签的规模: (1533,)
测试特征的规模: (658, 6)
测试标签的规模: (658,)

3.建立初始随机森林模型

建立初始模型,基本上都使用模型的默认参数,建立RF(RandomForestRegressor)模型,我们唯一指定了一个n_estimators参数。

from sklearn.ensemble import RandomForestRegressor#建立初始模型
RF = RandomForestRegressor(n_estimators = 100,random_state = 0)
#训练数据
RF.fit(train_features,train_labels)
#预测数据
predictions = RF.predict(test_features)

4.模型评估

该例子我们使用的是回归模型,预测结果是一个准确的数值。我们的目标是希望我们的预测结果与真实数据的误差越好。所以我们在此选用的模型评估方法为均方误差(mean_squared_error)和均方根误差(root_mean_squared_error)。下式分别是MSE和RMSE的计算公式,其中Yi为真实值,Yi^为预测值。

 

MSE.png

 

RMSE.png

from sklearn.metrics import mean_squared_error
#传入真实值,预测值
MSE = mean_squared_error(test_labels,predictions)RMSE = np.sqrt(MSE)
print('模型预测误差:',RMSE)
模型预测误差: 5.068073484568353

5.RandomizdSearchCV参数优化

from sklearn.model_selection import RandomizedSearchCVRF = RandomForestRegressor()
#设置初始的参数空间
n_estimators = [int(x) for x in np.linspace(start = 200,stop = 2000,num = 10)]
min_samples_split = [2,5,10]
min_samples_leaf = [1,2,4]
max_depth = [5,8,10]
max_features = ['auto','sqrt']
bootstrap = [True,False]
#将参数整理为字典格式
random_params_group = {'n_estimators':n_estimators,'min_samples_split':min_samples_split,'min_samples_leaf':min_samples_leaf,'max_depth':max_depth,'max_features':max_features,'bootstrap':bootstrap}
#建立RandomizedSearchCV模型
random_model =RandomizedSearchCV(RF,param_distributions = random_params_group,n_iter = 100,
scoring = 'neg_mean_squared_error',verbose = 2,n_jobs = -1,cv = 3,random_state = 0)
#使用该模型训练数据
random_model.fit(train_features,train_labels)

Random_model fit process.png

 

我们观察下模型的训练过程,我们设置了n_iter=100,由于交叉验证的折数=3,所以该模型要迭代300次。第二层显示的是训练过程的用时,训练完成总共用了6.2min。第三层显示的是参与训练的参数。

使用集成算法的属性,获得Random_model最好的参数

random_model.best_params_
{'n_estimators': 1200,'min_samples_split': 5,'min_samples_leaf': 4,'max_features': 'auto','max_depth': 5,'bootstrap': True}

将得出的最优参数,传给RF模型,再次训练参数,并进行结果预测。可以看到经过参数优化后,模型的效果提升了2%。

RF = RandomForestRegressor(n_estimators = 1200,min_samples_split = 5,min_samples_leaf = 4,max_features = 'auto',max_depth = 5,bootstrap = True)
RF.fit(train_features,train_labels)
predictions = RF.predict(test_features)RMSE = np.sqrt(mean_squared_error(test_labels,predictions))print('模型预测误差:',RMSE)
print('模型的提升效果:{}'.format(round(100*(5.06-4.96)/5.06),2),'%')模型预测误差: 4.966401154246091
模型的提升效果:2 %

6.使用GridSearhCV对参数进行进一步优化

上一步基本上确定了参数的大概范围,这一步我们在该范围,进行更加细致的搜索。网格搜索的效率比较低,这里我只选择了少数的几个参数,但是用时也达到了9分钟。如果参数增加,模型训练的时间将会大幅增加。

from sklearn.model_selection import GridSearchCV
import timeparam_grid = {'n_estimators':[1100,1200,1300],'min_samples_split':[4,5,6,7],'min_samples_leaf':[3,4,5],'max_depth':[4,5,6,7]}
RF = RandomForestRegressor()
grid = GridSearchCV(RF,param_grid = param_grid,scoring = 'neg_mean_squared_error',cv = 3,n_jobs = -1)
start_time = time.time()
grid.fit(train_features,train_labels)
end_time = time.time()
print('模型训练用时:{}'.format(end_time - start_time))
模型训练用时:534.4072196483612

获得grid模型最好的参数

grid.best_params_
{'max_depth': 5,'min_samples_leaf': 5,'min_samples_split': 6,'n_estimators': 1100}

将最好的模型参数传给RF模型,再次对数据进行训练并作出预测。

RF = RandomForestRegressor(n_estimators = 1100,min_samples_split = 6,min_samples_leaf = 5,max_features = 'auto',max_depth = 5,bootstrap = True)
RF.fit(train_features,train_labels)
predictions = RF.predict(test_features)RMSE = np.sqrt(mean_squared_error(test_labels,predictions))print('模型预测误差:',RMSE)
模型预测误差: 4.969890784882202

从结果来看,模型效果并没有什么提升,说明在随机搜索的过程中,已经找到了最优参数。最终结果模型预测的温度与实际温度相差4.96华氏度(2.75℃)。我们以该数据集作为一个示例,总结数据挖掘的全过程以及RandomizedSearchCV工具,在具体的调参工作中也是通过一步一步去优化参数,不断缩小预测值与真实值之间的误差。

 

prediction result.png

7.总结

  • 1.随机参数选择模型(RandomizedSearchCV)可以帮助我们快速的确定参数的范围。
  • 2.对于随机参数选择模型而言,初始的特征空间选择特别重要。如果初始的特征空间选择不对,则后面的调参工作都可能是徒劳。我们可参考一些经验值或者做一些对比试验,来确定模型的参数空间。
  • 3.RandomizedSearchCV和GridSearchCV搭配使用,先找大致范围,再精确搜索
  • 4.通过优化模型参数,虽然每次的提升幅度不是很大,但是通过多次的优化,这些小的提升累加在一起就是很大的提升。
  • 5.遇到不懂的问题,多查看sklearn官方文档,这是一个逐渐积累和提升的过程

推荐阅读
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • ML学习笔记20210824分类算法模型选择与调优
    3.模型选择和调优3.1交叉验证定义目的为了让模型得精度更加可信3.2超参数搜索GridSearch对K值进行选择。k[1,2,3,4,5,6]循环遍历搜索。API参数1& ... [详细]
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
  • 本文介绍了如何在Python中使用多元核密度估计(KDE)并将其结果在3D空间中进行可视化。通过利用`scipy`库中的`gaussian_kde`函数和`matplotlib`或`mayavi`库,可以有效地展示数据的密度分布情况。 ... [详细]
  • Python 中使用 Pyecharts 绘制雷达图详解
    本文将详细介绍如何在 Python 环境中利用 Pyecharts 库来创建美观且功能丰富的雷达图。适合需要图形化展示多维度数据的开发者和研究人员。 ... [详细]
  • 在现代Web应用中,当用户滚动到页面底部时,自动加载更多内容的功能变得越来越普遍。这种无刷新加载技术不仅提升了用户体验,还优化了页面性能。本文将探讨如何实现这一功能,并介绍一些实际应用案例。 ... [详细]
  • 本文介绍如何使用 Python 的 Pandas 库中 Series 对象的 round() 方法,对数值进行四舍五入处理。该方法在数据预处理和分析中非常有用。 ... [详细]
  • 本文详细介绍了如何在Android应用中使用GridView组件以网格形式展示数据(如文本和图像)。通过行列布局,实现类似矩阵的数据展示效果。 ... [详细]
  • Microsoft即将发布WPF/E的CTP(Community Technology Preview)和SDK,标志着RIA(Rich Internet Application)技术的新里程碑。更多详情及下载链接请参见MSDN官方页面。 ... [详细]
  • 本文档旨在帮助开发者回顾游戏开发中的人工智能技术,涵盖移动算法、群聚行为、路径规划、脚本AI、有限状态机、模糊逻辑、规则式AI、概率论与贝叶斯技术、神经网络及遗传算法等内容。 ... [详细]
  • Docker入门与实践指南
    本文介绍了Docker的基础知识,包括其作为开源应用容器引擎的特点,以及如何利用Docker将应用程序及其依赖项打包成轻量级的容器镜像。同时,还详细讲解了Docker的核心概念、安装过程及基本命令操作。 ... [详细]
  • PHP 过滤器详解
    本文深入探讨了 PHP 中的过滤器机制,包括常见的 $_SERVER 变量、filter_has_var() 函数、filter_id() 函数、filter_input() 函数及其数组形式、filter_list() 函数以及 filter_var() 和其数组形式。同时,详细介绍了各种过滤器的用途和用法。 ... [详细]
  • 本题探讨了在一个有向图中,如何根据特定规则将城市划分为若干个区域,使得每个区域内的城市之间能够相互到达,并且划分的区域数量最少。题目提供了时间限制和内存限制,要求在给定的城市和道路信息下,计算出最少需要划分的区域数量。 ... [详细]
  • Nginx 反向代理与负载均衡实验
    本实验旨在通过配置 Nginx 实现反向代理和负载均衡,确保从北京本地代理服务器访问上海的 Web 服务器时,能够依次显示红、黄、绿三种颜色页面以验证负载均衡效果。 ... [详细]
  • 本文探讨了为何相同的HTTP请求在两台不同操作系统(Windows与Ubuntu)的机器上会分别返回200 OK和429 Too Many Requests的状态码。我们将分析代码、环境差异及可能的影响因素。 ... [详细]
author-avatar
孟倩-951127
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有