热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

一个函数打天下,einsum

作者丨永远在你身后知乎来源丨https:zhuanlan.zhihu.comp71639781编辑丨极市平台einsum全称Einsteinsummationconvention&

作者丨永远在你身后@知乎

来源丨https://zhuanlan.zhihu.com/p/71639781

编辑丨极市平台

einsum全称Einstein summation convention(爱因斯坦求和约定),又称为爱因斯坦标记法,是爱因斯坦1916年提出的一种标记约定,简单的说就是省去求和式中的求和符号,例如下面的公式:

以einsum的写法就是:

后者将  符号给省去了,显得更加简洁;再比如:

 (1)

 (2)

上面两个栗子换成einsum的写法就变成:

 (1)

 (2)

在实现一些算法时,数学表达式已经求出来了,需要将之转换为代码实现,简单的一些还好,有时碰到例如矩阵转置、矩阵乘法、求迹、张量乘法、数组求和等等,若是以分别以transopse、sum、trace、tensordot等函数实现的话,不但复杂,还容易出错

现在,这些问题你统统可以一个函数搞定,没错,就是einsum,einsum函数就是根据上面的标记法实现的一种函数,可以根据给定的表达式进行运算,可以替代但不限于以下函数:

矩阵求迹:trace
求矩阵对角线:diag
张量(沿轴)求和:sum
张量转置:transopose
矩阵乘法:dot
张量乘法:tensordot
向量内积:inner
外积:outer

该函数在numpy、tensorflow、pytorch上都有实现,用法基本一样,定义如下:

einsum(equation, *operands)

equation是字符串的表达式,operands是操作数,是一个元组参数,并不是只能有两个,所以只要是能够通过einsum标记法表示的乘法求和公式,都可以用一个einsum解决,下面以numpy举几个栗子:

# 沿轴计算张量元素之和:
c = a.sum(axis=0)

上面的以sum函数的实现代码,设  为三维张量,上面代码用公式来表达的话就是:

换成einsum标记法:

然后根据此式使用einsum函数实现等价功能:

c = np.einsum('ijk->jk', a)
# 作用与 c = a.sum(axis=0) 一样

更进一步的,如果  不止是三维,可以将下标  换成省略号,以表示剩下的所有维度:

c = np.einsum('i...->...', a)

这种写法pytorch与tensorflow同样支持,如果不是很理解的话,可以查看其对应的公式:

# 矩阵乘法
c = np.dot(a, b)

矩阵乘法的公式为:

然后是einsum对应的实现:

c = np.einsum('ij,jk->ik', a, b)

最后再举一个张量乘法栗子:

# 张量乘法
c = np.tensordot(a, b, ([0, 1], [0, 1]))

如果  是三维的,对应的公式为:

对应的einsum实现:

c = np.einsum('ijk,ijl->kl', a, b)

下面以numpy做一下测试,对比einsum与各种函数的速度,这里使用python内建的timeit模块进行时间测试,先测试(四维)两张量相乘然后求所有元素之和,对应的公式为:

然后是测试代码:

from timeit import Timer
import numpy as np# 定义两个全局变量
a = np.random.rand(64, 128, 128, 64)
b = np.random.rand(64, 128, 128, 64)# 定义使用einsum与sum的函数
def einsum():temp = np.einsum('ijkl,ijkl->', a, b)def npsum():temp = (a * b).sum()# 打印运行时间
print("einsum cost:", Timer("einsum()", "from __main__ import einsum").timeit(20))
print("npsum cost:", Timer("npsum()", "from __main__ import npsum").timeit(20))

上面Timer是timeit模块内的一个类

Timer(stmt, setup).timeit(number)# stmt: 要测试的语句# setup: 传入stmt的运行环境,比如stmt中要导入的模块等。# 可以写一行语句,也可以写多行语句,写多行语句时要用分号;隔开语句# number: 执行次数

将两个函数各执行20遍,最后的结果为,单位为秒:

einsum cost: 1.5560735
npsum cost: 8.0874927

可以看到,einsum比sum快了几乎一个量级,接下来测试单个张量求和:

将上面的代码改一下:

def einsum():temp = np.einsum('ijkl->', a)def npsum():temp = a.sum()

相应的运行时间为:

einsum cost: 3.2716003
npsum cost: 6.7865246

还是einsum更快,所以哪怕是单个张量求和,numpy上也可以用einsum替代,同样,求均值(mean)、方差(var)、标准差(std)也是一样

接下来测试einsum与dot函数,首先列一下矩阵乘法的公式以以及einsum表达式:

然后是测试代码:

a = np.random.rand(2024, 2024)
b = np.random.rand(2024, 2024)# einsum与dot比较
def einsum():res = np.einsum('ik,kj->ij', a, b)def dot():res = np.dot(a, b)print("einsum cost:", Timer("einsum()", "from __main__ import einsum").timeit(20))
print("dot cost:", Timer("dot()", "from __main__ import dot").timeit(20))# einsum cost: 80.2403851
# dot cost: 2.0842243

这就很尴尬了,比dot慢了40倍(并且差距随着矩阵规模的平方增加),这还怎么打天下?不过在numpy的实现里,einsum是可以进行优化的,去掉不必要的中间结果,减少不必要的转置、变形等等,可以提升很大的性能,将einsum的实现改一下:

def einsum():res = np.einsum('ik,kj->ij', a, b, optimize=True)

加了一个参数optimize=True,官方文档上该参数是可选参数,接受4个值:

optimize : {False, True, ‘greedy’, ‘optimal’}, optional

optimize默认为False,如果设为True,这默认选择‘greedy(贪心)’方式,再看看速度:

einsum cost: 2.0330937
dot cost: 1.9866218

可以看到,通过优化,虽然还是稍慢一些,但是einsum的速度与dot达到了一个量级;不过numpy官方手册上有个einsum_path,说是可以进一步提升速度,但是我在自己电脑上(i7-9750H)测试效果并不稳定,这里简单的介绍一下该函数的用法为:

path = np.einsum_path('ik,kj->ij', a, b)[0]
np.einsum('ik,kj->ij', a, b, optimize=path)

einsum_path返回一个einsum可使用的优化路径列表,一般使用第一个优化路径;另外,optimize及einsum_path函数只有numpy实现了,tensorflow和pytorch上至少现在没有

最后,再测试einsum与另一个常用的函数tensordot,首先定义两个四维张量的及tensordot函数:

a = np.random.rand(128, 128, 64, 64)
b = np.random.rand(128, 128, 64, 64)def tensordot():res = np.tensordot(a, b, ([0, 1], [0, 1]))

该实现对应的公式为:

所以einsum函数的实现为:

def einsum():res = np.einsum('ijkl,ijmn->klmn', a, b, optimize=True)

tensordot也是链接到BLAS实现的函数,所以不加optimize肯定比不了,最后结果为:

print("einsum cost:", Timer("einsum()", "from __main__ import einsum").timeit(1))
print("tensordot cost:", Timer("tensordot()", "from __main__ import tensordot").timeit(1))# einsum cost: 4.2361331
# tensordot cost: 4.2580409

测试了10多次,基本上速度一样,einsum表现好一点的;不过说是一个函数打天下,肯定是做不到的,还有一些数组的分割、合并、指数、对数等功能没法实现,需要使用别的函数,其他的基本都可以用einsum来实现,简单而又高效

之后经过进一步测试发现,优化反而出现速度降低的情况,例如:

def einsum():temp = einsum('...->', a, optimize=True)def test():temp = a.sum()

上面两中对数组求和的方法,当a是一维向量时,或者a是多维但是规模很小是,优化的einsum反而更慢,但是去掉optimize参数后表现比内置的sum函数稍好,我认为优化是有一个固定的成本

还有一个坑需要注意的是,有些情况的省略号不加optimize会报错,就拿上面的栗子而言:

np.einsum('...->', a, optimize=True) # 正常运行
np.einsum('...->', a) # 报错

很无奈,试了很多次,不加optimize就是会报错,但是并不是所有的省略号写法都需要加optimize,例如:

使用省略号实现上面两个公式并不需要加optimize,能够正常运行

np.einsum('i...->...', a) # 正常
np.einsum('...,...->...', a, b) # 正常

但是如果碰到下面的公式:

上式表示将a除第一个维度之外,剩下的维度全部累加,这种实现就必须要加optimize

np.einsum('i...->i', a, optimize=True) # 必须加optimize,不然报错

再举一个栗子:

c = (a * b).sum()
# 如果不知道a, b的维数,使用einsum实现上面的功能也必须要加optimize
c = einsum('...,...->', a, b, optimize=True)

总结一下,在计算量很小时,优化因为有一定的成本,所以速度会慢一些;但是,既然计算量小,慢一点又怎样呢,而且使用优化之后,可以更加肆意的使用省略号写表达式,变量的维数也不用考虑了,所以建议无脑使用优化。

觉得有用麻烦给个在看啦~  



推荐阅读
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
  • 浅析python实现布隆过滤器及Redis中的缓存穿透原理_python
    本文带你了解了位图的实现,布隆过滤器的原理及Python中的使用,以及布隆过滤器如何应对Redis中的缓存穿透,相信你对布隆过滤 ... [详细]
  • 本文整理了一份基础的嵌入式Linux工程师笔试题,涵盖填空题、编程题和简答题,旨在帮助考生更好地准备考试。 ... [详细]
  • 使用Tkinter构建51Ape无损音乐爬虫UI
    本文介绍了如何使用Python的内置模块Tkinter来构建一个简单的用户界面,用于爬取51Ape网站上的无损音乐百度云链接。虽然Tkinter入门相对简单,但在实际开发过程中由于文档不足可能会带来一些不便。 ... [详细]
  • C语言编写线程池的简单实现方法
    2019独角兽企业重金招聘Python工程师标准好文章,一起分享——有时我们会需要大量线程来处理一些相互独立的任务,为了避免频繁的申请释放线程所带 ... [详细]
  • 普通树(每个节点可以有任意数量的子节点)级序遍历 ... [详细]
  • python模块之正则
    re模块可以读懂你写的正则表达式根据你写的表达式去执行任务用re去操作正则正则表达式使用一些规则来检测一些字符串是否符合个人要求,从一段字符串中找到符合要求的内容。在 ... [详细]
  • Java 中的等时日期(int,int)方法,示例 ... [详细]
  • 本文介绍了如何使用Python爬取妙笔阁小说网仙侠系列中所有小说的信息,并将其保存为TXT和CSV格式。主要内容包括如何构造请求头以避免被网站封禁,以及如何利用XPath解析HTML并提取所需信息。 ... [详细]
  • 本文介绍了 Go 语言中的高性能、可扩展、轻量级 Web 框架 Echo。Echo 框架简单易用,仅需几行代码即可启动一个高性能 HTTP 服务。 ... [详细]
  • 自然语言处理(NLP)——LDA模型:对电商购物评论进行情感分析
    目录一、2020数学建模美赛C题简介需求评价内容提供数据二、解题思路三、LDA简介四、代码实现1.数据预处理1.1剔除无用信息1.1.1剔除掉不需要的列1.1.2找出无效评论并剔除 ... [详细]
  • 目录预备知识导包构建数据集神经网络结构训练测试精度可视化计算模型精度损失可视化输出网络结构信息训练神经网络定义参数载入数据载入神经网络结构、损失及优化训练及测试损失、精度可视化qu ... [详细]
  • Python多线程详解与示例
    本文介绍了Python中的多线程编程,包括僵尸进程和孤儿进程的概念,并提供了具体的代码示例。同时,详细解释了0号进程和1号进程在系统中的作用。 ... [详细]
  • 本文详细介绍了如何使用Python的多进程技术来高效地分块读取超大文件,并将其输出为多个文件。通过这种方式,可以显著提高读取速度和处理效率。 ... [详细]
  • Spring Data JdbcTemplate 入门指南
    本文将介绍如何使用 Spring JdbcTemplate 进行数据库操作,包括查询和插入数据。我们将通过一个学生表的示例来演示具体步骤。 ... [详细]
author-avatar
小帅哥小羊儿_309
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有